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�� Introduction

In this paper and in ����� ����� we study the structure of spaces� Y �
which are pointed Gromov�Hausdor	 limits of sequences� f
Mn

i � pi�g�
of complete� connected Riemannian manifolds whose Ricci curvatures
have a de�nite lower bound� say RicMn

i
� �
n � ��� In Sections


��� and sometimes in ����� we also assume a lower volume bound�
Vol 
B�
pi�� � v � �� In this case� the sequence is said to be non�
collapsing� If limi��Vol 
B�
pi�� � �� then the sequence is said to
collapse� It turns out that a convergent sequence is noncollapsing if and
only if the limit has positive n�dimensional Hausdor	 measure� In par�
ticular� any convergent sequence is either collapsing or noncollapsing�
Moreover� if the sequence is collapsing� it turns out that the Hausdor	
dimension of the limit is actually � n � �� see Sections � and 
�

Our theorems on the in�nitesimal structure of limit spaces have
equivalent statements in terms of 
or implications for� the structure on
a small but de�nite scale� of manifolds with RicMn � �
n � ��� Al�
though both contexts are signi�cant� for the most part� it is the limit
spaces which are emphasized here� Typically� the relation between corre�
sponding statements for manifolds and limit spaces follows directly from
the continuity of the geometric quantities in question under Gromov�
Hausdor	 limits� together with Gromov�s compactness theorem� �����
Theorems ���
� 
��� 
see also Remark 
����� ��
� ���� are examples of
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results concerning Riemannian manifolds� whose proofs depend on re�
sults on the in�nitesimal structure of limit spaces� see also Remark ����

Our results� most of which were announced in ����� are applications
of the �almost rigidity� theorems for manifolds of almost nonnegative
Ricci curvature� announced in ���� and proved in ��
�� In particular�
we use the generalized splitting� �volume cone implies metric cone� and

implicitly� integral Toponogov theorems� together with tangent cone
analysis of the sort employed in geometric measure theory�

The continuity of the volume 
of balls� under Gromov�Hausdor	
limits� Mn

i � Y n� where RicMn
i
� �
n � �� and Y n is a manifold�

also plays a direct role in the present discussion� The continuity of the
volume in the above case was conjectured by Anderson�Cheeger and
proved in �����

The remainder of this paper is divided into � sections and two ap�
pendices�

�� Renormalized limit measures�

�� Arbitrary limit spaces�

�� dim Y � n� � in the collapsed case�

�� Polar limit spaces�


� Noncollapsed limit spaces�

�� dim S
Y n� � n � ��

�� Two sided bounds on Ricci curvature and Einstein manifolds�

�� Examples�

Appendix �� Reifenberg�s method and some consequences�
Appendix �� Remarks on the synthetic treatment of Ricci curvature�

We now describe the contents of the paper in more detail�
Let dim denote Hausdor� dimension� We write Y m to indicate that

Y has dimension m� Let � � R�� We say that y is an ��dimensional
point� if limr�� dim
Br
y�� � �� We denote the subset of such points by
Y 
���

Let the complete pointed metric space� 
Y m� y�� be the pointed
Gromov�Hausdor	 limit of a sequence of connected pointed Rieman�
nian manifolds� f
Mn

i � pi�g� with RicMn
i
� �
n � ��� Of course� m � n
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and Y m is locally compact� see ����� By de�nition� a tangent cone at
y � Y m is a complete pointed Gromov�Hausdor	 limit� fYy � d�� y�g
of a sequence of rescaled spaces� f
Y m� r��i d� y�g� where d� d� are the
metrics 
distance functions� of Y m� Yy respectively� and frig is a pos�
itive sequence with ri � �� It follows from Gromov�s compactness
theorem that every such sequence has a subsequence� frjg� such that
fY m� r��j d� yg is convergent� In particular� tangent cones exist for all
y � Y m� but might depend on the choice of convergent sequence�

It is easy to see that any tangent cone also arises as the pointed limit
of some sequence� f
Mn

i � qi�g� with RicMn
i
� �
n� ���i� where �i � ��

Thus� tangent cones have nonnegative curvature in a generalized sense�
In some arguments� we must also consider iterated tangent cones i�e� we
take 
Yy�z at some point� z � Yy � and iterate this construction �nitely
many times� It is also easy to see that any iterated cone can be realized
as a pointed Gromov�Hausdor	 limit of some sequence� f
Ym� r��i d� yi�g�
and hence� as the limit of some sequence� f
Mn

i � qi�g� as well�

De�nition ���� A point� y � Y � is called regular� if for some k�
every tangent cone at y is isometric to Rk�

Let Rk denote the set of k�regular points and put R � �kRk� the
regular set� Note that this de�nition and notation� as well as certain
de�nitions and notation below� di	er somewhat from those of ����� the
theorems of ���� are correct as stated 
with the de�nitions given there��

De�nition ���� A point� y � Y m� is called singular� if it is not
regular�

We denote the singular set by S�

Ideally� we would like to show that R is connected� R � Rm�
dimS � m � � and more generally� S has codimension � � with re�
spect to any natural measure for which the measure of R is positive�

In the noncollapsed case� m � n� all of the above mentioned proper�
ties will be shown to hold� see ���� for the connectedness ofR� Moreover�
with regard to the dimension of the singular set� we get the stronger as�
sertion� dimS � n� ��

In the collapsed case� m � n� without further assumptions� our
information at the present is less complete� We do not know that R
is connected� nor do we know that m is an integer� nor that Rm is
nonempty� However� we have partial information on the the latter two
issues and strong additional information as well�
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An obvious density argument implies dimRk � k� compare 
�����

����� Moreover� if k is the largest of those integers� �� such that R�

is nonempty� then Hk
Rk� � �� where Hk
�� denotes k�dimensional
Hausdor� measure� see ���� 
and Section 
 for the case k � n�� We
show in Section � that this k satis�es k � m� for so called polar limit
spaces� Y m� see below for the de�nition� By the results of Section 
�
noncollapsed limit spaces are polar� and at present we do not know an
explicit example of limit space which is not polar�

For many purposes� the natural measures on our limit spaces are
those which are obtained by considering a suitable subsequence�
f
Mn

j � pj�g� and extracting an appropriate limit of the sequence of renor�
malized Riemannian measures on the manifolds� Mn

j � Here� the renor�
malization is such that renormalized volume of the unit ball� B�
pi�� is
equal to �� These renormalized limit measures were constructed in �����
see also Section � and compare �����

In the noncollapsed case� it turns out that any such measure� �� is
just a multiple of the Hausdor	 measure� Hn� see Theorem 
��� How�
ever� in the collapsed case� di	erent Gromov�Hausdor	 convergent se�
quences� Mn

i � Y m� can lead to di	erent limit measures� see Example
����� Thus� a renormalized limit measure encodes information on the
collapsing sequence from which it arises� compare ����� Even in the col�
lapsed case� the renormalized limit measures and Hausdor	 measure are
closely related� see ���� for further discussion�

Any renormalized limit measure� �� has the crucial property that
�
S� � � and as a consequence� �
R� � �� In particular it follows that
the regular set� R� is dense�

In order to discuss the content of the individual sections� we intro�
duce some additional de�nitions and notation�

De�nition ���� A point� y � Y m� is called k�weakly Euclidean� if
some tangent cone at y splits o	 a factor� Rk� isometrically�

Let WEk denote the set of k�weakly Euclidean points� Then

Y m �WE� � WE� � � � � � WEn � Rn � WEn�� � ��

Of course� Rk 	 WEk�

De�nition ���� A point� y � Y m� is called k�degenerate if it is not

k � ���weakly Euclidean�

Let Dk denote the set of k�degenerate points� Then

D� 	 D� 	 � � � 	 Dn � Y m�
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If we put Dk n R � Sk 	 S� then S � �kSk�
Before proceeding� we mention that in Section �� a corresponding

notion of k�Euclidean point is de�ned� in which the word� �some�� in
De�nition ��� is replaced by �every�� From the technical standpoint�
this distinction is very signi�cant� However� at present� in all known
examples� the k�weakly Euclidean and k�Euclidean sets coincide�

In Section �� we construct renormalized limit measures� �� on limit
spaces� Y m� Let Mk

H denote the simply connected space of dimension k
and curvature 
 H � For z � Mk

H � put Vk�H
r� � Vol 
Br
z��� Let � be
a measure� Then by construction� we have� the inequality�


��
�
�
Br
z��

Vk�H
r�
�

for z � Y m� � � �� k � n� H � ��� see ����� In fact� it follows from
����� that 
��
� holds in the directionally restricted form given in 
A������
Presently� we do not know if 
��
� always holds for � � Hm� k � n�

H � ��� compare Examples ���� and �����
In Section �� we show that for any renormalized limit measure� ��

we have �
S� � �� We also show that WEk 	 �i�kRi�
In Section � we show dim Y m � n implies dim Y m � n � ��
In Section � we introduce the class of polar limit spaces� The space

Y m is polar if the base point of every iterated tangent cone is a pole
i�e� if every minimal geodesic segment emanating from the base point
is the restriction of some ray� We show that for polar limit spaces�
dimDk � k� Note that from the results of Sections � and 
� it follows
that dimDn�� � n��� for all 
possibly nonpolar� limit spaces� We also
show that in the polar case� Y 
�� 	 �i�f�gRi� compare Section ��

In Section 
� we discuss the noncollapsed case� Vol 
B�
pi�� � v � ��
where pi � Mn

i � or equivalently� dim Y n � n� Here� Y n � Y 
n� and
it follows easily that R � Rn� We also show in Section 
 that any
tangent cone at y � Y n is a metric cone� Thus� in particular� Y n is
polar and so� dimDk � k� Additionally� we show that the result of ����
on the continuity of the volume 
equivalently� n�dimensional Hausdor	
measure� can be extended to the general case in which a sequence of
limit spaces� fY n

i g� converges to a limit space Y
n� In particular� 
��
�

holds for � � Hn� k � n� H � ��� on such limit spaces�
Let dGH denote Gromov�Hausdor	 distance and let B�
�� 	 R

k�

De�nition ���� The 
�� k��regular set� 
Rk�� � Rk
Y m�� con�
sists of those points� y� such that every tangent cone� 
Yy � y��� satis�es
dGH
B�
y��� B�
��� � ��
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Note that 
Rk�� � S need not be empty� If m � n� then for � small�
we must have k � n and we will just write R�� rather than 
Rn���

Using the results of Appendix �� we show in Section 
 that for � �

�
n�� su�ciently small�
�
R�� the interior of R�� is homeomorphic to a

smooth manifold� The homeomorphism is essentially unique and with
respect to this parameterization� the metric is bi�H�older equivalent to
a smooth metric� where the exponent� 	� satis�es� 	 � � as � � ��

possibly� the metric on
�
R� is actually bi�Lipschitz equivalent to a smooth

metric� The basic idea for constructing a bi�H�older homeomorphism is
to use the results proved in ����� Recall that in ����� using the solution
of a conjecture of Anderson�Cheeger proved there� combined with a
conjecture of Anderson�Cheeger and Perelman analogous to the one
proved in ����� the following was shown� If RicMn � ��
n� and some
ball in Mn is Gromov�Hausdor	 close to the corresponding ball in Rn�
then every sub�ball 
whose center is not very close to the boundary� is
close on its own scale to the corresponding ball in Rn� More precisely� for

all � � �� there exists � � �� such that R�
Y
n� 	

�
R�
Y

n�� see Theorem
A���
� For subsets of Rn� an analog of the condition which de�nes R� is
known as �Reifenberg�s condition�� as was pointed out to us by Bruce
Kleiner� see ����� �
���

In Section � we show that S
Y n� 	 Sn��
Y
n�� Thus� in the non�

collapsed case� the singular set has codimension at least �� Obvious
��dimensional examples show that this result is optimal� In the col�
lapsed case� well�known examples show that the singular set can have
codimension �� For instance� S� collapses with bounded sectional cur�
vature� to a closed interval�

In Section �� we continue to assume dim Y n � n� Using a theorem
of Anderson� ���� we show that if jRicMn

i
j � 
n � ��� then for 
 � 

n��

in fact R� � R 
i�e�� R�

T
S � ��� In particular� R is open and S is

closed� Clearly� this is not the case if we just assume RicMi � �
n� ���
Moreover� in this case of bounded Ricci curvature� R has the structure
of smooth manifold with C��� Riemannian metric� the metric is C� if
in addition� Mn

i is Einstein� At points of R� the convergence of metrics
gi � g� takes place in the C��� 
respectively C�� topology�

In Section �� we present a number of examples� The �rst of these� Ex�
ample ����� illustrates that for all 
 � �� there exist Y n and
y � R�
Y n�� such that the tangent cone at y is not unique�

In the collapsed case� we show that various new phenomena arise�
For instance there may exist distinct mutually tangent geodesics and at
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certain singular points of Y m� 
��
� can fail to hold� for � � Hm� k �
m� H � ��� see Example ����� Additionally� there may be points at
which there exist distinct tangent cones having di	erent dimensions�
see Example ����� There exist also collapsed limit spaces containing
points at which no tangent cone is a metric cone� see Example ���
�
However� the spaces in these examples are still polar� Finally 
and not
surprisingly� we show that if for a sequence� fMni

i g� with RicMni
i

� ��

we have ni � 
� then for the limit space� all good properties 
such as
the splitting theorem� can fail to hold�

In Appendix �� we reformulate the theorem of Reifenberg �
�� 
see
also �
��� in an intrinsic setting� In combination with the results of
��������� 
in particular with the conjectures of Anderson�Cheeger and
Perelman proved there� this implies a sharpening of Perelman�s lower
bound on the relative contractibility radius in the presence of almost
maximal volume� ����� As a consequence� we obtain sharpenings of most
of the results of ��������� and additional new results� see in particular�
Theorem A������

As a speci�c example� it follows that there exists �
n� � �� such
that if RicMn � n � � and Vol
Mn� � 
�� �
n�� Vol
Sn� �� then Mn is
di�eomorphic to the sphere� Sn� Indeed Mn might be bi�Lipschitz to
Sn� but this does not follow from Reifenberg�s method�

In Appendix �� we discuss synthetic treatments of the concept�
�Ricci curvature bounded below�� in light of the results on limit spaces
obtained in the body of the paper and in ����� �����

We will now give a brief indication of a portion of the contents of
����� �����

In ����� we will show that the set� SS 	 S� of so called strongly
singular points� has codimension � � with respect to any renormalized
limit measure� � 
in a suitably de�ned sense�� Conjecturally� this holds
for S as well� By de�nition� the strongly singular set is the complement
of the weakly regular set�

In ���� we show that on the set of so called k�strongly regular points�
SRk� any renormalized limit measure� �� determines the same measure
class as Hausdor	� measure� Hk � Since� the complement of the strongly
regular set� SR � �kSRk� has measure zero with respect to any ��
it follows that the collection� f�g� of all renormalized limit measures
determines a well�de�ned measure class i�e� �� is absolutely continuous
with respect to ��� for all ��� ��� The above discussion is based in part
on the Poincar�e inequality� which is shown to hold for our limit spaces�
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For polar limit spaces� we �nd that Y 
k� 	 Rk for k � Z�� that
Y 
k� is empty for k �� Z� and that for 
 su�ciently small� 
Rk�� is
empty for k � m� In particular� for polar limit spaces� m � dim Y m is
an integer�

Additionally� we discuss recti�ability properties of limit spaces� Based
in part on this discussion� we show that there is a natural intrinsi�
cally de�ned self�adjoint Laplacian on functions� with all of the familiar
properties which hold in the smooth case� Moreover� we show that
the spectrum of the Laplacian behaves continuously under measured
Gromov�Hausdor	 convergence�

In ����� in the noncollapsed case� we prove a result on the connected�
ness of the 
�regular set� We show that for all 
 � �� there exists � � ��

such that R�
Y n� lies in a single component of
�
R� 
Y n�� Conjecturally�

the same holds for arbitrary m � dim Y m� Under the assumption that

a slightly more technical version of� this condition holds in general�
we show the isometry group of any limit space� Y m� is a Lie group�
compare ����� In particular this is the case for m � n� Knowing that
the isometry group is always a Lie group would have signi�cant impli�
cations for the structure of the fundamental group� for manifolds with
diameter bounded above and Ricci curvature bounded below� It would
imply that the results of ����� proved there under the assumption that
the sectional curvature is bounded below� actually remain valid in the
presence of a lower bound on Ricci curvature�

We also show in ���� that certain spaces which closely resemble the
�horns� of Example ����� but which do not have locally constant di�
mension� do not arise as limit spaces�

Finally in ����� we specialize the results of the present paper to the
case in which the manifolds�Mn

i � are homogeneous spaces� compare �
���
�����

We close this introduction with some additional remarks and con�
jectures�

Conjecture ���� The interior of Y n n Sn�	
Y n� is a topological
manifold�

In a subsequent joint paper with Gang Tian� ����� we prove the
stronger statement� S
Y n� 	 Sn�	
Y

n�� under the additional assump�
tion that for some p � �

� � the Lp�norms of the curvature tensors of the
manifolds� Mn

i � are uniformly bounded� see also �����

In case the metrics on the Mn
i are K�ahler�Einstein on a �xed com�
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plex manifold Mn
i �Mn� with �xed K�ahler class� a standard argument

based on characteristic numbers and curvature identities implies that
this uniform bound actually holds� with p � �� see ����� On the other
hand� the following conjecture is well known� see ���� Conjecture ����

Conjecture ��	� If jRicMn
i
j � 
n � ��� then S
Y n� 	 Sn�	
Y

n�
and Hn�	
Sn�	
Y n�� �
�

Finally� we point out that the results of this paper should be com�
pared to those of ���� ����� which treat analogous questions in the context
of a lower bound on sectional curvature� i�e�� for Alexandrov spaces� Re�
call that in ���������� one �nds the �rst theorems on Ricci curvature 
in�
tegral Toponogov theorems� etc�� that strongly resemble results which
play a basic role in Alexandrov space theory�

Moreover� some of the results of Sections 
� � of this paper should
be contrasted with the theorem of Grove�Petersen ���� 
see also �����
����� giving a lower bound on the relative contractibility radius at all
points ofMn� under the assumptions diam
Mn� � d� Vol 
Mn� � v � ��
KM � ��� Here KM denotes sectional curvature� Well known examples
show that this fails to hold if the bound KM � �� is weakened to
RicMn � �
n � ��� see �
�� However� according to Theorem 
��� and
Remark 
���� the complement of a set of codimension � can be written
as a union of sets� on each of which� every point has a neighborhood of a
de�nite size di	eomorphic to a standard ball� Conjecturally� a weakened
version of this property holds o	 a set of codimension ��

We are grateful to Fred Almgren� Mike Anderson� David Bao� Syl�
vain Cappell� S�S�Chern� Misha Gromov� Bruce Kleiner� Fang�Hua Lin�
Stephen Semmes� Gang Tian� Zhongmin Shen and Shmuel Weinberger
for helpful discussions� We are particularly grateful to the referee for
many highly constructive suggestions which very substantially improved
the exposition and for pointing out an error in one of the examples in a
previous draft of this paper�

A portion of this paper was written during Fall ���
� while the �rst
author was a member of the Institute for Advanced Study� He thanks
the Institute for its hospitality�

�� Renormalized limit measures

In this section� we construct renormalized limit measures� �� on 
pos�
sibly collapsed� spaces� 
Y m� y�� which are pointed Gromov�Hausdor	
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limits of sequences� f
Mn
i � pi�g� satisfying


���� RicMn
i
� �
n� ���

For any sequence� there is a subsequence for which the renormalized
limit measure exists� These measures were �rst constructed by Fukaya�
who used a somewhat di	erent argument� see �����

In the noncollapsed case� the limit measure exists without the nec�
cessity of passing to a subsequence� or of renormalizing the measure�
The unique limit measure is just Hausdor	 measure� Hn� see Theorem

��� 
If� for the sake of consistency� one does renormalize the measure�
then one obtains a multiple of Hn� where as usual� the normalization
factor depends on the choice of base point�� However� in the collapsed
case� the renormalized limit measure on the limit space can depend on
the particular choice of subsequence� see Example �����

The renormalized limit measures play an important role role in �����
����� for instance in connection with the theory of the Laplace operator
on limit spaces� compare �����

LetMn satisfyRicMn � �
n���� Then by 
��
�� for � � Vol
��� k �
n� H � �� 
and the triangle inequality� the following relations hold� For
r� � r�� x�� x� � s�


����
Vol 
Br�
x���

Vol 
Br�
x���
�

Vn���
r��

Vn���
r� � s�
�


����
Vol 
Br�
x���

Vol 
Br�
x���
�

Vn���
r��

Vn���
r� � s�
r� � r� � s�


����
Vol 
Br�
x���

Vol 
Br�
x���
� � r� � r� � s�

Fix p and de�ne the renormalized volume function�

V 
x� r� � Vol 
Br
x��

by


��
� V 
x� r� �� Vol 
Br
x�� ��
�

Vol 
B�
p��
Vol 
Br
x���
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It follows from 
�����
���� that on compact subsets� BR
p�� �r�� r���
the collection of all such functions 
i�e�� for all 
Mn� p� satisfying 
�����
are uniformly bounded� uniformly bounded away from zero and uni�
formly equicontinuous�

By combining the proof of Gromov�s compactness theorem with an
obvious modi�cation of the proof of the theorem of Arzela�Ascoli� we
obtain�

Theorem ���� Given any sequence of pointed manifolds� f
Mn
i � pi�g�

for which RicMn
i
� �
n � �� holds� there is a subsequence�f
Mn

j � pj�g�
convergent to some 
Y m� y� in the pointed Gromov�Hausdor� sense� and
a continuous function V� � Y m � R� � R�� such that if qj � Mn

j �
z � Y m and qj � z� then for all R � ��


���� V j
qj � R�� V�
z� R� 
uniformly on BR�
p�� ��� R����

Proof� After passing to a subsequence� we can assume f
Mn
i � pi�g

converges to 
Y m� y� in the Gromov�Hausdor	 sense� Take a count�
able dense subset� fzkg 	 Y m� and a countable dense subset� fR�g 	
R�� Given the above mentioned bounds implied by 
�����
����� a stan�
dard in�nite diagonal argument shows that there exists a subsequence�
f
Mn

j � pj�g� such that 
���� holds for z � fzkg� R � fR�g� Just as in the
Arzela�Ascoli theorem� it follows that 
���� actually holds in general�
This su�ces to complete the proof�

Since we can multiply both sides of 
��
� by 
Vol
B�
y���
��� the

function� V�� satis�es the following inequality for all z � Y m�


����
V�
z� r��

V�
z� r��
�
Vn���
r��

Vn���
r��
�

Indeed� it is clear that 
A������ the directionally restricted version of

��
� holds for � � �� k � n� H � ���

De�ne an outer measure� �� on subsets of Y m� by the standard
construction�


���� �
A� � lim
���

��
A��

where

��
A� � inff
X
i

V�
zi� ri�jBri
zi�� ri � �g�
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By standard measure theory� � is a metric outer measure and the
corresponding measure� also denoted by �� is a Radon measure� see
Theorem ���� of �����

Theorem ����� There is a unique Radon measure� �� such that for
all� z� R�


����� �
BR
z�� � V�
z� R��

In particular � satis�es the inequality�


�����
�
Br�
z��

�
Br�
z��
�
Vn���
r��

Vn���
r��
r� � r��

Proof� From the de�nition of V�� it is clear that for all z� R�


����� �
BR
z�� � V�
z� R��

Thus� we must prove the opposite inequality�
Let Mn satisfy 
���� and let K 	 BR
x�� By a standard covering

argument based on 
��
�� for � � Vol
��� k � n� H � ��� it follows that
for all 
 � �� there exist balls� Bri
xi�� with xi � K�


����� � � i � N � N

� n��


���
� �

� n� � ri � 
�

such that


����� K 	 �ni
�Bri
xi��


�����
X
i

Vol 
Bri
xi�� � 
� � 
�Vol 
T�
K���

Here T�
�� denotes the 
�tubular neighborhood� Moreover� for some
N � � N and


�����
�

�
�

� n� � r�i � 
 i � �� � � �N ��

the balls� fBr��

xi�g� are mutually disjoint and


�����
X
i

Vol 
Br�i

xi�� � 
�� 
�Vol 
K��
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By dividing both sides of the inequalities in 
������ 
����� by
Vol 
B�
pj�� and passing to the limit� we obtain corresponding inequal�
ities for Y m� in which the function� Vol 
Br
x�� is replaced by V��
Clearly� the estimate corresponding to 
����� implies 
������ and thus�

����� as well�

Finally� let �� be a second Radon measure satisfying ��
BR
z�� �
V�
z� R�� Since �� �

� are Radon measures� it su�ces to show that they
agree on each bounded open set� U � Again since �� �� are Borel regular�
it follows that for all � � �� there exists a compact set� K 	 U � with


����� �
K� � 
�� ���
U��


����� ��
K� � 
�� ����
U��

Since �� �� agree on balls� with the help of 
������ we easily conclude
that � � ���

The following is a direct consequence of 
�����

Proposition �����


����� �
Br
z�� � c
n� z� y�r � � r � ��

Example ����� Consider the sequence of metrics on R�� each of
nonnegative curvature� given in polar coordinates by


���
� fdr� � �f
nr�
n��d��g�

where


����� f j���
� 
 ��

In this case� the limit space is the Alexandrov space� ���
�� with its
standard metric and the measure� �� is ��dimensional Hausdor	 mea�
sure� given by integration of the ��form� dr�

Note however� that there exists a second sequence of metrics on R��
each of nonnegative curvature� say�


����� fdr� � h�n
r�d�
�g�

where


����� hj�
�

n
�
� 


r

n
�
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The manifolds in this sequence look like very thin cones with sharply
rounded tips� The limit is again the Alexandrov space� ���
�� and the
measure� �� is given by integration of the ��form�


����� rdr�

In particular� it follows that for a �xed limit space� which might be
an Alexandrov space� the limit measure is not unique even if one �xes
the dimension of the approximating sequence� This indicates that even
for Alexandrov spaces it is of interest to consider measures other than
Hausdor	 measure� Many other examples in which the measure is not
unique can be constructed e�g� from the examples in Section ��

Remark ����� As mentioned in Section �� it will be shown in ����
that the collection� f�g� of all renormalized limit measures determines a
well�de�ned measure class i�e� �� is absolutely continuous with respect
to ��� for all ��� ���

Example ����� For the sequence of manifolds constructed in
Example ����� the measure� �� is given by integration of the 
�form�


����� r��������

where � is the volume form associated to 
normalized� Hausdor	 mea�
sure� H�� on Y �� Recall that for balls centered at the origin� one has

��
�� for � � H�� k � 
 � ��� H � ��� On the other hand� 
��
� holds
for � � �� k � � � ��� ��� H � ��� Recall that �
� �� � ��

Remark ����� As a consequence of Proposition ����� it follows
that any limit measure� �� is absolutely continuous with respect to Haus�
dor	 measure� in case the limit space is ��dimensional� It will be shown
in ���� that 
as a consequence of the results described in Section �� this
result has a suitable generalization to arbitrary limit spaces�

Conjecture ����� For some k� with m � k � n� one has ����	� for
� � Hm� m � k � n� H � ���

The phenomena discussed in Example ����� are related to Conjecture
�����

Proposition ���
� Let f
Mn
i � pi�g � 
Y m� y� satisfy RicMn

i
� ��i�

where �i � �� If Y m splits isometrically� Y m � R�X� then any limit
measure� �� is a product measure� � � H�

R
� �� for some measure� ��

on X�
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Proof� It su�ces to show that for all x� r � �� t� � t�� we have
�
Br

t�� x��� � �
Br

t�� x���� After making the change of coordinates�
t� t � �

� 
t� � t��� we can assume t� � �t� t� � t� for some �xed t � ��
Moreover� by symmetry� it su�ces to show


����� �
Br

�t� x��� � �
Br

t� x����

For w � Br

�t� x��� let �s denote a minimal geodesic segment from

s� x� to w� Let


����� Is � fu j �s
u� � Br

�t� x��g�


����� Js � fu j �s
u� � Br

t� x���

and let jIsj� jJsj denote the ��dimensional measure of Is� Js� respectively�
From the isometric splitting� R�X � it follows that for all � � �� there
exists s
�� such that for s � s
��� we have


����� jJsj� � � jIsj�

Clearly� the directionally restricted version of 
��
� 
see 
A������
holds for � � �� k � n�H � �� Therefore� by observing the ball�
Br

�t� x��� from the point� 
s� x�� letting s � 
 and applying 
������
we easily obtain 
������

Remark ����� In ����� ����� we will prove results on generalized
volume convergence which are closely related to Proposition ���
�

�� Arbitrary limit spaces

Let 
Y m� y� be the pointed Gromov�Hausdor	 limit of a sequence�
f
Mm

i � pi�g� such that 
���� holds� Let � be a renormalized limit measure
as in Section ��

The main result of this section is

Theorem ���� For any renormalized limit measure� �
S� � ��

As a consequence of Theorem ���� we will deduce Theorem ���� of
��
�� which is restated here as Theorem ���
� The proof was deferred to
the present paper� We mention however� that Theorem ���
 is consid�
erably weaker than Theorem ��� and that a shorter� more direct proof
is possible�
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In order to prove Theorem ���� it will be convenient to introduce
some additional concepts and notation� compare Section ��

De�nition ���� A point� y � Y m� is called k�Euclidean if every
tangent cone at y splits o	 a factor� Rk� isometrically�

We denote by Ek� the set of k�Euclidean points� Of course�
Ek 	 WEk�

De�nition ���� A point� y � Y m� is called k�weakly degenerate if
it is not 
k � ���Euclidean�

We denote by WDk� the set of k�weakly degenerate points�
LetWEk denote the set of points for which there exists some tangent

cone� not isometric to Rk� which splits o	 a factor� Rk� isometrically�
For all 
 � �� we also de�ne sets� 
WEk��� such that WEk � ��
WEk���
as follows� We say that y � 
WEk��� if there exists r � � and X �

�� x� � Rk�X � such that


���� dGH
Br
y�� Br

�� x���� 
r�

The strongest assertion in the following Lemma ��
 is the one con�
cerning the set� 
WEk��� The proof of this assertion will be given in �����
However� for the proof of Theorem ���� only the assertion concerning
the set WEk is required�

We will show in Proposition ���� below� that if Y is not a single
point� then �
WD�� � �� From this and the following two lemmas� we
easily obtain Theorem ����

Lemma ��
� We have �
WEk n Ek� � �� Moreover� there exists


n� � �� such that if y � 
WEk��� for 
 � 

n�� then for all su
ciently
small r � �� we have �
Br
y�� Ek� � ��

Lemma ����

�
WEk nWEk��� � ��

Proof of Theorem ���� We can assume that Y is not a single point�
Write A � B if A and B coincide o	 a set of measure zero with respect
to �� Then by Propositon ���� below� we have


���� Y m �WD� � E� � E��

By Lemmas ��
 and ���� we have� WEk � Ek��� for all k� Thus�


���� Ek � Rk � 
Ek �WEk� � Rk � Ek���
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By induction� we get


���� Y m � R� �R� � � � � � Rn�

Let y � Y m and let �y
z� � z� y denote the distance function from
y�

De�nition ����� A point� z � Y m� is not a restricted cut
point of y� if for all � � �� there exists r
z� �� � �� such that for
� � r � r
z� ��� there exists a space� Xr� 
�� xr� � R� Xr 
the iso�
metric product� and a pointed �r�Gromov�Hausdor	 approximation�
�r � Br
z�� Br

�� xr��� such that


����� j�y � t � �rj � �r 
on Br
z���

where t denotes the coordinate function on R�Xr corresponding to the
factor� R �

Let WD�
y� denote the set of restricted cut points of y� Note that
WD� 	 �yWD�
y�� We put E�
y� � Y m nWD�
y��

Remark ����� From the generalized splitting theorem� Theorem
���� of ��
�� it follows that if w is an interior point of a minimal geodesic
segment� �� with �
�� � y� then z � E�
y�� But in principle� E�
y� could
contain points which lie on no such segment�

Proposition ����� If Y is not a single point� then for all y � Y m�


����� �
WD�
y�� � ��

In particular� �
WD�� � ��

Proposition ���� is a direct consequence of the following lemma�
which concerns smooth Riemannian manifolds satisfying 
����� Lemma
���� plays a role in Section � as well�

Put As� �s�
p� � Bs�
p� n Bs�
p�� Fix � � r� � r� and � � � � r��
Let X
p� r�� r�� �� denote the set of points� �
t� � Ar��r�
p�� such that
�
�� � p� � �j��� t� is minimal and �j��� t� �� is not minimal�

Given � � � � �� put


���
� Z
p� r�� r�� �� �� � fq � Ar��r�
p� jB��
q� 	 X
p� r�� r�� ��g�

Lemma ����� There exist k � k
n� r�� r��� c � c 
n� r�� r�� �� and
q�� � � � � qN � such that


����� Z
p� r�� r�� �� ��	
N�
i
�

B��
qi��
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�����
NX
i
�

Vol
�
B��
qi�

�
� k��


����� N � c���n�

Proof� It follows directly from 
the directionally restricted version
of� 
��
�� for � � Vol
��� k � n�H � �� 
see 
A������ that


����� Vol 
X
p� r�� r�� ��� � k
n� r�� r����

see 
��
��
Let q�� � � � qN be a maximal set of points in Z
p� r�� r�� �� �� such that

qi� qj � ��� if i �� j� Then 
����� holds and since

�iB��
qi� 	 X
p� r�� r�� ���

it follows that 
����� holds as well� We have B �
� ��

qi� � B �

� ��

qj� � ��

for i �� j� Thus� by 
����� and 
��
�� we get 
������
Let �
��� � � � � �i j c�� � � � � cj� denote any function such that for �xed

c�� � � � � cj�


����� lim������ ��i��� � ��

Proof of Proposition ���
� It follows from the generalized split�
ting theorem 
Theorem ���� of ��
�� that if RicMn � �
n � ��� p �
Mn and z � Ar��r�
p� n Z
p� r�� r�� �� ��� then 
����� holds with r � ��
and � � �
�� � jn��

Let 
Y m� y� be a limit space such that 
���� holds and let � be a
renormalized limit measure on Y m� Let f��g be a �xed sequence such
that �� � �� Then it follows by an obvious diagonal argument that
for all j� k� � � Z�� the subset� W 
p� j� k� ����	 A��j��j
p�� for which


����� fails to hold with r � �����j�k�� � � �
��jn� admits a covering by
balls� fB�����j�k�


qi�g� i � �� � � � � N � such that 
������
����� hold with
p replaced by y and Vol
�� replaced by �
���

For �xed j� �� we have in particular�


����� �

�� ��
k�k�

W 
p� j� k� ���

�A � c
n� j� ����
�k� �
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����� �

�� ��
k�
�

��
k�k�

W 
p� j� k� ���

�A � ��
Note that if

z � A�j���j
p� n
��

k�
�

��
k�k�

W 
p� j� k� ����

then 
����� holds for all su�ciently small r and � � �
� �
��jn�� By

considering the sequence� �� � �� we get from 
������


����� �
WD�
y�� A��j��j
y�� � ��

and letting j �
� we obtain 
������

Let 
Ek�� denote the set of points� z� such that for every tangent
cone� Yz � there exists X� 
�� x� � Rk�X � such that


���
� dGH
B�
z��� B�

�� x���� ��

Here� X � might depend on the particular tangent cone� Yz � Note that
Ek � ��
Ek���

Recall that given a metric space� Z� and a collection� B � fBr�
z��g�
of balls� such that sup� r� �
� then there is a subcollection�


����� B� � fBr��

z���g�

of mutually disjoint balls� such that


����� ���B�r�� 
z��� � ��Br�
z���

see Chapter �� Theorem ��� of �
��� This statement� which we call the
Covering Theorem� has the following standard consequence�

Let � be a ���nite measure on Z� such that for all R � �� there
exists c
R�� such that for all z � Z�


����� �
B�r
z�� � c
R��
Br
z�� 
r � R��

Let A 	 Z� If for all z � A� the lower density�  A
z�� of A at z 
with
respect to �� satis�es


�����  A
z� �� lim
�
Br
z�� A�

�
Br
z��
� ��
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then


����� �
A� � ��

Proof of Lemma ���� In view of 
��
�� for � � �� k � n�H � ���
the discussion preceding the proof implies that it su�ces to show the
following� For all z � Y m and � � �� there exists � � �� such that if for
some X� 
�� x� � Rk �X � we have


����� dGH
Br
z�� Br

�� x���� �r�

then


�����
�
Br
z� n 
Ek���

�
Br
z��
� ��

compare 
���
�� 
������ 
������

First consider the case of a Riemannian manifold� Mn� satisfying

����� By scaling� it su�ces to consider B�
p� 	Mn� such that for some
X� 
�� x� � X �


����� dGH
B�
p�� B�

�� x���� ��

By the proof of Theorem ���� of ��
� 
see also ���� Lemma ������ the
following holds� Given

q � B��
���jn�
p�� ��
�jn���
�jn� � s � ��
�jn��

there exist harmonic functions� b�� � � � �bk onBs
q�� given by bij�Bs
q� �
b�i jBs
q�� where b

�
i 
x� � pi� x� pi� q� for suitable pi� such that

�

Vol
Bs
q��

Z
Bs�q�

�X
i
jr
bi � b�i �j

�

�
X

i�
j
jhrbi� rbji j�

X
i
jHessbi j

�

�

�����

� �	 
�jn��

The collection of points� fpig� is gotten from the splitting in 
������
Since apart from a set of measure �
�jn�Vol 
B�
p��� we can cover�

B��
��jn�
q� by a collection of mutually disjoint balls as in 
������ it
will su�ce to consider a single such ball� After rescaling the metric�
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g � s��g and making the replacement� bi � s��bi� we are reduced to
considering a ball such that

�

Vol
B�
q��

Z
B��q�

�X
i
jr
bi � b�i �j

� �
X

i �
j
jhrbi� rbji j

�
X

i
s��jHessbi j

�

�

���
�

��
�

Vol
B�
q��

Z
B��q�

f

� �
�jn��

As recalled below� relation 
���
� can be used to control the extent to
which sub�balls� Br
q� 	 B�
q�� satisfy a condition like 
����� 
possibly
with a di	erent constant on the right�hand side and a di	erent space on
the left�hand side�� Indeed� by the proof of Theorem ���� of ��
� 
see
Sections �� �� �� and rescaling� the following holds� If for some � � ��


�����
�

Vol
Br
q��

Z
Br�q�

f � ����
�jn�r�

then there exists X� 
�� x� � Rk�X such that


����� dGH
Br
q�� Br

�� x���� �
�
���
�jn� jn�r�

Now let B denote the collection of all balls for which 
����� fails to
hold� Thus� B includes all balls for which 
����� fails� By the Covering
Theorem� there exists a subcollection� B� � fBr��


q���g� such that 
�����
is valid�

Since the balls of B� are mutually disjoint� it follows from 
���
��

����� that


�����
X

��
Vol
Br��


q���� � ��

Hence� by 
��
�� for � � V ol
��� k � n�H � ��� we have


�����
X

��
Vol
B�r�� 
q���� � c
n���

where ���B�r�� 
q��� contains all balls for which 
����� fails�
By letting � � � and then �� �� we conclude that 
����� holds for

the case of smooth manifolds�
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Now� by a straightforward limiting argument� based on 
������
�����
and the fact that ���B�r�� 
q��� contains all balls for which 
����� fails�
we �nd that 
����� holds for arbitrary limit spaces� 
Y m� y�� satisfying

����� This completes the proof�

Remark ����� By making stronger use of the L��estimate on
the Hessians of the harmonic functions� bi� together with the Poincar�e
inequality� we can get more detailed information on the regular set� In
����� by using such ideas� we will prove the assertion in Lemma ��
 con�
cerning 
WEk��� We will also obtain lower estimates on the codimension

suitably de�ned� of the complement of the set of points� y � Rk� which
satisfy for some r�� c � �� � � 	 � � and all r � r��


����� dGH
Br
y�� Br
��� � cr����

Roughly speaking� at such 	�regular points� the metric is C�� see ����
for further discussion� Finally� we mention that the results described in
Remarks ���� and ���� are obtained as applications of this discussion�

Proof of Lemma ���� By the discussion preceding the proof of
Lemma ��
� it su�ces to show the following� Given z � WEk� for all
� � �� there exists r � �� such that


�����
�
Br
z� n 
WEk�����

�
Br
z��
� ��

Suppose� there exists � � � such that 
����� fails for all r� Then
since the sets 
WEk�� are open� by a standard argument in measure
theory� we �nd a tangent cone Yz � R

k � X � where X is not a point�
such that for 
�� x� � Rk�X �


�����
��
B�

�� x�� n 
WEk����
R

k �X��

��
B�

�� x���
� ��

Here the measure� ��� is a limit measure for some rescaled sequence�

Y m� r��j d� z�� which is constructed as in Section �� Clearly� �� is itself
a renormalized limit measure� in the sense of Section ��

By Proposition ����� we have ��
WD�

�� x��� � �� Moreover� if
w� � E� 

�� x�� nR

k � x� then

w� � Ek��
R
k �X� 	 WEk��
R

k �X��

Since by Proposition ���
� ��
Rk� x� � � 
X is not a point� it follows
that forWDk � R

k�XnEk��� we have ��
WDk� � �� which contradicts
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������ This completes the proof of Lemma ��� and hence of Theorem
��� as well�

Remark ����� At present� for m � n� we are unable to show
that the sets� 
Rk�� 
Y

m�� have nonempty interior� At interior points�
Reifenberg�s theorem� in the intrinsic formulation given in Appendix
�� can be applied to obtain the local topological regularity of 
Rk���
compare Section 
� for the case m � n�

We close this section by restating Theorem ���� of ��
�� the proof of
which was de	ered to the present paper�

Let Mn satisfy 
���� and let BR
p� 	Mn�

Theorem ���
� For all 
 � �� there exists a disjoint union of balls�
�N�
i
� �� U� 	 BR
p�� such that�


����� Vol
U�� � 
�� 
�Vol
BR
p���


����� ri � �

� n� � ��


����� dGH
Bri
qi�� Bri
��� � 
ri 
� � Rki��

Moreover� there exist harmonic functions� b��i� � � � �bki�i� on Bri
qi�
and an 
ri�Gromov�Hausdor� approximation� �i � Bri
qi� � Bri
���
such that if bj�i denotes the i�th coordinate function on Rki� then


����� jbj�i � bj�i � �ij � 
ri�

Proof� This follows from an obvious compactness argument based
on Theorem ���� together with the existence of harmonic functions�
b�� � � � �bk� as in 
������ compare ��
� Section ���

�� dim Y � n� � in the collapsed case

The main result of this section is

Theorem ���� If 
Y m� y� is the pointed Gromov�Hausdor� limit of
a sequence� f
Mn

i � mi�g� with Vol 
B�
pi��� �� then dim Y m � n � ��
Equivalently� dim Dn�� � n� �� for any limit space� Y m�
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As explained in Section �� it su�ces to prove the �rst statement� We
begin by proving a counterpart for Hausdor	 measure� of Proposition
�����

Proposition ���� dim WD�
z� � n � �� for all z � Y m� In
particular� dim WD�
Y

m� � n � ��

Proof� Since the proof is very similar to that of Proposition �����
we will be brief�

Let Z
p� r�� r�� �� �� be as in 
���
�� Given � � �� it follows from

����� that


���� 
���n����N � c
n� r�� r�� ���
n�������

If we consider sequences� � � ��k� k � �� �� � � � � and �� � �� we get the
following estimate which corresponds to 
������


���� Hn����
���

�k�

�� ��
k
k�

W 
p� j� k� ���

�A � c
n� j� ����
n����
� ���k������

Here H	

 denotes ��Hausdor	 content in dimension �� Now the proof

can be completed as in Proposition �����

Proof of Theorem 
��� Suppose that Hn����
Y m� � � for some
� � �� By a standard lemma in measure theory 
see ���� Chapter ��� and
compare Section �� we can write Y m � A�B� whereHn����
B� � � and
if z � A� then for some tangent cone� Yz � we have H

n����
B�
z��� � ��
In view of Proposition ���� we can assume with no loss of generality�
that z � E�
Y m��

We have Yz � R�X� z� � 
�� x�� for some 
X� x�� It follows that
E�
R�X� nR� x 	 E�
Yy�� Since Hn����
R� x� � �� we can repeat
the previous argument� starting at some 
�� x�� � E�
Yy��

If we repeat this argument� after n�� steps� we arrive at an iterated
tangent cone which is isometric toRn���W � for someW � and for which
Hn����
B�

�� w��� �� �� Thus� W is not a point� and as above� we have
En
R

n�� � W � �� �� By using Theorem 
��� the generalization of the
n�dimensional volume convergence theorem of ����� we easily conclude
the proof�

�� Polar limit spaces

Throughout this section� we assume 
in addition to 
����� that Y m

is polar� in the sense de�ned below� Under this assumption� we show



�
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that Rk is nonempty� for some k � m� On the other hand� we show
in Part II� that for Y m an arbitrary limit space satisfying 
����� Rk is
empty� for k � m� It follows in particular that if Y m is polar� then m
is an integer�

Additionally� we show that in the polar case� dim Dk � k� see Section
� for the de�nition of Dk � Since Sk 	 Dk� in this case� dim Sk � k as
well�

As observed in Section 
� if m � n� then Y n is polar� Thus� in
particular� dim Sk
Y n� � k�

Let X be a complete length space� We say x � X is a pole� if for all
x �� x� there is a ray� � � ���
� � X � with �
�� � x and �
t� � x� for
some t � �� Here� as usual� � is called a ray if each �nite segment of �
is minimal�

Let y � Y m and let Yy be a tangent cone at y� If z� � Yy � we can
consider a tangent cone to Yy at z�� More generally� any tangent cone
obtained by iterating this process will be called an iterated tangent cone�
Recall that iterated tangent cones played an implicit role in Section ��

De�nition ���� The space� Y m� is called polar if for all y � Y m�
the base point of every iterated tangent cone is a pole�

As mentioned in Section �� currently we do not know an explicit
example of a limit space satisfying 
���� which is not polar� If m � n�
then every tangent cone is a metric cone� see Theorem 
��� Thus� every
limit space� Y n� is polar�

Fix � � t � � 
which plays no further role in the discussion�� Let X
be a metric space and A 	 X � We say that x � A is a k�density point
of A� if there exists a positive sequence� rj � � such that for all j� and
any covering of Brj 
x��A by balls� fBsi
xi�g� we have


����
X
i

ski �
t

�k
rkj �

Let Tk
A� denote the set of k�density points of A� By an easy lemma
in measure theory� 
see ���� Chapter �����


���� Hk
A n Tk
A�� � ��

Let Y 
k� denote the set of k�dimensional points of Y m 
de�ned in
Section ��� Clearly� for all k� � k� we have


���� Y 
k� 	 Tk�
Y ��
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Also� if y � Tk�
Y �� by Gromov�s compactness theorem� it is obvious

that there exists a tangent cone� Yy � with H
k�
Yy� � ��

Let fkg denote the smallest integer � k�

Theorem ��
� If Y m is polar� then Y 
k� 	 �n
i
fkgRi�

Proof� As noted above� for all k� � k� the set Y 
k�� is contained
in the closure of points� y such that there exists Yy with Hk�
Yy� � ��
Let z� �� y

�
be a k��density point of Yy � Then there exists a tangent

cone� 
Yy�z� � at z�� such that� H
k� 

Yy�z�� � �� Since the base point

of 
Yy�z� is a pole� from the splitting theorem 
Theorem ���� of ��
�� it
follows that 
Yy�z� splits o	 a factor R� isometrically�

Proceeding by induction� we �nd that there exists an interated tan�
gent cone at y which splits o	 a factor� Ri isometrically� where i � fkg�

It follows that for all 
 � �� Y 
k� 	 
WEi��� Therefore� using the
assertion concerning 
WEk�� in Lemma ��
 
which will be proved in
����� our claim follows from an argument like that which was given in
the proof of Theorem ���� see 
����� 
�����

Note that using only the �rst statement in Lemma ��
 
the proof of
which was given in Section �� and arguing as in the proof of Theorem
���� one obtains from the Baire catagory theorem� the weaker statement�
Y 
k� 	 �n

i
fkgWRi�

Let 
WEk���r denote the open subset consisting of points� y� such
that there exists X� 
�� x�� Rk �X and� s � r� with


���� dGH
Bs
y�� Bs

�� x���� 
s�

We denote by 
WRk���r 	 
WEk���r� the open subset of points� y�
such that the space� X � in 
����� can be taken to consist of a single
point� Also� de�ne the ��weakly regular set� 
WRk��� and weakly regular
set� 
WRk�� by 
WRk�� � �r
WRk���r� and 
WRk� � ��
WRk���
respectively�

On compact subsets of Y � the following holds� For all � � �� there
exist 

��� r
�� � � such that if z�Dk � �� then z � 
WEk�����r 
where
the bar denotes distance�� In particular� if we put 
Dk�� � Y n
WEk�����
then 
Dk�� is closed and Dk � ����
Dk��� Also� 
WEn�� � 
WRn���

Theorem ���� If Y m is polar� and in particular� if m � n� then
dim Dk � k�

Proof� If the assertion is false� then for some k� � k and 
 � ��
there exists a k��density point� y� of 
Dk��� By Gromov�s compactness
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theorem� we can assume that� 
Y� r��j d� y� Gromov�Hausdor	 converges
to a tangent cone� Yy � where frjg is as in 
�����

It follows that for all � � �� and j su�ciently large� z � 
Dk��
Y � �
B�
y�� implies


���� dGH
z� 
Dk��
Yy� �B�
y��� � ��

where B�
y� denotes the unit ball for the rescaled metric� r
��
j d� Since

y is a k��density point and 
Dk��
Yy� is closed� we conclude that

Hk�

Dk��
Yy�� B�
y��� � ��

Write Yy � R
��X � where R� is the maximal Euclidean factor� Since

y � 
Dk��
Y
m�� we have � � k� Put y� � 
�� x��� Since H

k�
R��x�� �
�� it follows that there is a k��density point� z�� of 
Dk��
Yy� which does
not lie on R� � x�� Since base point of any tangent cone of Yy at z�
is a pole� it follows that such a tangent cone splits o	 a factor� R���

isometrically� Since z� � 
Dk��
Yy�� we �nd that in fact� � � � � k�
By repeating this argument su�ciently many times 
with successive
iterated tangent cones� we conclude � � �� a contradiction� By Theorem

��� if m � n� then Y m is polar� This su�ces to complete the proof�

Remark ���� For Riemannian manifolds satisfying Vol 
B�
p�� �
v � �� Theorem ��� can be employed in an obvious fashion to provide
an extension of Theorem ���
�

Remark ����� A simple direct argument shows that for polar limit
spaces� the set 
D��� is actually �nite� for all � � �� In the noncollapsed
case� one can give an explicit estimate on the cardinality of this set�


� Noncollapsed limit spaces

In this section we continue to assume that 
Y� y� is the Gromov�
Hausdor	 limit of a sequence� f
Mn

i � pi�g� In addition� we assume



��� Vol 
B�
pi�� � v � ��

Before discussing the additional properties of the regular set that
hold in this case� we give some results which are more geometric in
nature�

Theorem 
��� If 
Y� y� satis�es ����	 and ����	� then for all
y � Y � every tangent cone at y is a metric cone� C
X�� on a length
space X� with diam
X� � ��
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Proof� Suppose there exists y � Y for which the assertion fails for
some tangent cone� Yy � which is the pointed Gromov�Hausdor	 limit of
a sequence 
Y� r��i d� y�� where d is the metric on Y � Since Yy is not a
metric cone� it follows that there exists � � �� 
 � ��! � � and rj � �
such that for any length space� Xj � with diam
Xj� � ��



��� dGH
Arj ��rj � 
rj�!rj��r Xj� � 
rj �

Here� as in ��
�� we understand that the metrics on Arj ��rj � and

rj �!rj��r Xj are measured in A�����rj������rj� and



�� ��rj� 
�� ��!rj��r Xj

respectively� However� according to Theorem ���� of ��
�� for any of
the manifolds� Mn

i � with limi��
Mn
i � pi� � 
Y� y� there are at most

"
��
� ��!� n� v� annuli which satisfy the above condition with 
 replaced
by �

�
� For i su�ciently large� this is a contradiction�

It follows immediately from Theorem 
�� that the space� Y n� is polar
in the sense of De�nition ����

Next we observe that the result on volume convergence� conjectured
by Anderson�Cheeger and proved in ����� can be sharpened as follows�

Theorem 
��� For all d� v� � � � there exists

�
�� � �
n� d� v� ��� ��

such that if for i � �� ��



�
� diam 
Mn
i � � d�



��� Vol 
Mn
i � � v � ��



��� dGH
M
n
� �M

n
� � � �
���

then



��� e��Vol 
Mn
� � � Vol 
M

n
� � � e�Vol 
Mn

� ��

Proof� It follows from 

��� and 
��
�� for � � Vol
��� k � n�
H � ��� that there exists 

n� v� � �� such that if in Theorem ���
� we
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take 
 � 

n� v�� then for all i � we have ki � n� With this observation�
the theorem follows from the argument of �����

Let Hn denote Hausdor	 measure� By de�nition� Hn is normalized
to agree with Lebesgue measure on Rn�

From 
the proof of� Theorem 
�� we immediately obtain the follow�
ing� compare Theorem ��
�

Theorem 
��� If Y satis�es ����	 and ����	 then dim Y � n�

Moreover� for any R � � and qi
dGH� z�



���� lim
i��

Vol 
BR
qi�� � Hn
BR
z���

In particular� any renormalized limit measure� �� is a multiple of Haus�
dor� measure� Hn� Thus� on Y n� ����	 holds� for � � Hn� k � n�
H � ���

We now consider the regular set�

Theorem 
���� Weakly regular points are regular i�e� WR
Y n� �
R
Y n� � Rn
Y

n�� Moreover� for all � � � there exists � � � such that
if y � 
WRn��� then y � 
Rn���

Proof� This follows directly from 
��
�� for � � �� k � n and
the argument used in ���� to prove the corresponding uniqueness theo�
rem 
conjectured by Anderson�Cheeger� for tangent cones at in�nity of
complete manifolds with RicMn � ��

Let 
WEk����
M
n� be as in Section � and put


Dk����
M
n� �Mk n 
WEk����
M

n��

From Theorem ��� 
see Section �� we immediately obtain the following�

Theorem 
���� Given k� � n � � and 
� � � �� there exists
� � �
n� d� v� k�� 
� �� � �� such that if

RicMn � �
n � ��� diam
Mn� � d�Vol 
Mn� � v�

then the set 
Dn����
M
n� admits a covering by balls� fBsi
qi�g� withP

i s
k�

i � ��

Remark 
���� By Theorem A����� given � � �� there exists
� � �
n� �� � �� such that for p � 
WRn����
Mn� � Mnn
Dn����
Mn��
there is a smooth imbedding� f � B�
���Mn 
where � � Rn� such that
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B������
p� 	 f
B�
��� 	 B������
p�� Thus 
roughly speaking� o	 a set
of codimension �� Theorem 
��� provides a sharpened generalization of
the result of �����

Recall that for all � � �� there exists � � �� such that R� 	
�
R� � By

Theorem A���� we get the following�

Theorem 
���� For � � �
n�� the set
�
R�
Y

n� has a natural smooth
manifold structure� Moreover� for this parameterization� the metric on
�
R�
Y n� is bi�H�older equivalent to a smooth Riemannian metric� The
exponent in this bi�H�older equivalence satis�es 	
��� � as �� ��

Remark 
��
� It seems possible that the above parametrization
can actually be chosen to be bi�Lipschitz�

�� dimS
Y n� � n � �

The main result of this section is

Theorem ���� If Y n satis�es ����	� ����	 then S
Y n� 	 Sn��
Y
n�

and dimS � n � ��

By Theorem ���� if S 	 Sn��� then dimS � n � �� Therefore�
it su�ces to show that a half space� Rn�� � R�� does not occur as a
limit space 
in the present noncollapsing case�� Intuitively� the reason
why this holds is the following� Consider an interior point� z� in such a
half space and a ball� Br
z�� with r greater than the distance from z�
to the boundary� Rn�� � �� The boundary of this ball contains points
whose distance from z is strictly less that r� namely Br
z�� 
Rn��� ���
Note however� that for a ball in a complete Riemannian manifold� this
never happens� We will show that in the noncollapsing case� it does
not happen for limit spaces as well� i�e�� we show that the boundary of
the Gromov�Hausodor	 limit of a sequence of balls� is the limit of the
sequence of boundaries of these balls�

Theorem ���� If Y n satis�es ����	� ����	� then at no point of Y
does there exist a tangent cone isometric to Rn���R��

Proof� Put Hn � Rn���R� 	 R
n and Ar��r�
x� � Br�
x�nBr�
x��

Suppose� that there exists 
Y n� y� with some Yy isometric to Hn�
Let fMn

i g � Y n be as in 
����� Fix 
 � �� Then� after rescaling the
metrics on Mi� for i su�ciently large� there is a continuous 
�Gromov�
Hausdor	 approximation� f � B�
pi�� B�
���Hn� Here B�
pi� 	Mn

i

and B�
�� 	 R
n�



�
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Using the map f � we will construct an auxiliary map� #f � and show
that the mod � degree of #f satis�es both deg #f � � and deg #f � �� This
will give the desired contraction�

Without loss of generality� we can assume that � is a regular value of
the distance function on Mn

i � Thus� B�
pi� is a smooth manifold with
boundary�

Since f is an 
�Gromov�Hausdor	 approximation� it follows that
f
�B�
pi�� is contained in an 
�neighborhood of �B�
�� � Hn� By ad�
justing f slightly 
using radial projection� we can assume without loss
of generality� that


���� f
�B�
pi�� 	 �B�
���H
n�

Note that �B�
���Hn is a proper subset of �
B�
���Hn��
Let q � �B �

�

pi� be a point such that f
q� is at maximal distance

from Rn���f�g� By further adjusting f 
using radial projection on say
B �

�

f
q��� we can assume without loss of generality that


���� f
B �
�

q�� 	 B �

�

f
q���


��
� f
A �
� �

�
�

q�� 	 A �

� �
�
�

f
q���

From Perelman�s theorem� ���� 
or Appendix �� together with the result
on local volume convergence proved in ����� it follows for say q� � B �

	

q�

and r � �
� � that the ball Br
q�� is contractible in the ball B���
�r
q���

where � � �

jn� � � as 
 � �� Thus� for 
 su�ciently small�
we can construct a continuous �
�Gromov�Hausdor	 approximation�
h � B �

�

f
q��� B �

�

q��

After adjusting h slightly 
using radial projection on B �
�

f
q��� we

can assume with no loss of generality�


���� h
�
B �

�

f
q��

�
	 B �

�

q��


���� h
�
A �

� �
�
�

f
q��

�
	 A �

� �
�
�

f
q���

Moreover� for z � B �
�

q� and �

jn� as above�


���� f � h
z�� z � �

jn��
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Clearly the map of pairs�

f � h �
�
B �

�

f
q��� A �

� �
�
�

f
q��

�
�
�
B �

�

f
q��� A �

� �
�
�

f
q��

�
�

has mod � degree satisfying� deg f � g � �� Thus� if we let

$f �
�
B �

�

q�� A �

� �
�
�

q�
�
�
�
B �

�

f
q��� A �

� �
�
�

f
q��

�
�

denote the map induced from #f by restriction� we have


���� deg $f � ��

Let Nn denote the closed manifold obtained by doubling B�
pi�
along its boundary� LetDn denote the manifold with boundary obtained
by doubling B�
���Hn along �B�
���Hn� Clearly� Dn is a topological
ball� We denote by #f � the induced map from Nn to Dn�

Since Dn is not a closed manifold� clearly deg #f � �� On the other
hand�


����� deg #f � deg $f � ��

since for say� z � B �
�	

f
q�� we have f��
z� 	 B �

�

q�� This contradiction

su�ces to complete proof�

�� Two sided bounds on Ricci curvature and Einstein
manifolds

In this section we continue to assume that 
Y n� y� is the Gromov�
Hausdor	 limit of a sequence� f
Mn

i � pi�g� such that 

��� holds� How�
ever� we strengthen 
���� to


���� jRicMn
i
j � n� ��

Sometimes� we will assume in addition� that each Mn
i is Einstein� In

either of these cases� we can replace the intrinsic version of Reifen�
berg�s theorem used in Section 
 by the corresponding estimate on the
C����harmonic radius 
respectively C��harmonic radius� proved in ����
Then� a more elementary and straightforward version of the discussion
of Section 
 yields improved results concerning regularity�

Theorem ���� If Y n satis�es ����	� ����	� then WR� � R� � R�
for some 
 � 

n� � �� In particular� the set S 	 Sn�� is closed�



�
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Moreover� R is a C����Riemannian manifold and at points of R� the
convergence� 
Mn

i � gi�� 
Y�n g��� takes place in the C����topology�

Theorem ���� If Y n satisfes ����	� ����	 and in addition� Mn
i

is Einstein� for all i� then R is a C��Riemannian manifold and the
convergence� 
Mn

i � gi�� 
Y n� g��� takes place in the C��topology�

Since� mutadis mutandis� the proof of Theorem ��� is the same as
that of Theorem ���� we will only prove the latter� First� we recall some
background from ����

Recall that there is a constant� �
n� � �� and for all � � 	 � ��
a function� �
n� 	� r� s� � 
�� �� � R�� with the following properties�
Assume Mn satis�es 
����� p �Mn and 
see Section ��


����
Vol 
Br
p��

Vn���
r�
� �� �
n��

Then for all q � Br
p�� with p� q � s � r� there exists �
n� 	� r� s� and a
harmonic coordinate system on the ball� B
r
q�� in which the metric�

gij�� satis�es de�nite C

��� bounds� say� jgi�jjC��� � �� and jdet
gij�j
�� �

��

If we assume in addition thatMn is Einstein � then for some �
n� r� s��
the same holds with C��� replaced by C��

According to ����� there exists 
 � 

n� � � such that if
p � 
WRn����
M

n�� then 
���� holds� compare Section 
�

Proof of Theorem ���� Write 
WRn� �
� �

Y n� � �j
WRn� �

� ��j
��
Y n��

where 
 � 

n�� Let fi �M
n
i � Y n be a Gromov�Hausdor	 equivalence

realizing the Gromov�Hausdor	 distance between Mn
i and Y n� Then

for all �xed j and i su�ciently large� fi
qi� � 
WRn� �
� �j

��
Y n� implies

qi � 
WRn���j��
M
n
i �� Hence� by the discussion preceding the proof�

there is a de�nite bound on the C����harmonic radius at qi� By us�
ing arguments which by now are standard 
compare e�g� ����� ���� and
Theorem ���� which asserts that S 	 Sn��� the proof can be concluded�

In view of Theorem ��� and ���� an obvious application of Gromov�s
compactness theorem gives

Theorem ��
� Given k� � n � �� � � 	 � � and � � �� there exist
� � �
n� d� v� k�� 	� ��� �� such that if Mn satis�es ����	� ����	� then the
set of points contained in a ball of radius d� at which the C����harmonic
radius is � �� admits a covering by balls� fBsi
qi�g� with

P
i s

k�

i � ��
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Theorem ���� If Mn satisfy ����	� ����	 and in addition� Mn is
Einstein� then �C����harmonic radius� can be replaced by �C��harmonic
radius� in Theorem ����

	� Examples

In this section we will construct a number of examples of spaces
which are Gromov�Hausdor	 limits of sequences of pointed Riemannian
manifolds� f
Mn

i � pi�g� of positive Ricci curvature� The tangent cones
of these limit spaces exhibit various phenomena which could not oc�
cur if say the sectional curvatures� KMn

i
� had a uniform lower bound�

Similarly� we will construct complete noncompact manifolds with posi�
tive Ricci curvature whose tangent cones at in�nity exhibit phenomena
which could not occur if the sectional curvature were nonnegative�

The �rst such example is due to Perelman 
unpublished� who con�
structed a metric on R	 with positive Ricci curvature� Euclidean volume
growth and quadratic curvature decay� for which the tangent cone at in�
�nity is not unique� compare ��
� and ����� In Perelman�s example� he
views R	 n f�g as R� � S�� on which he constructs a metric of triply
warped product type� based on the Hopf �bration� S� � S� �

� S�� Our
examples are based on doubly warped product constructions� and we
will begin by brie%y reviewing some properties of such metrics� com�
pare ����

Let I be an interval and let Z be a manifold� Consider a family
of Riemannian metrics� gZ
r� on Z� parameterized by r � I � Assume
that for each p � Z� the metrics gZ
r�jZp can all be simultaneously
diagonalized with respect to some �xed metric on the tangent space�
Zp� Thus� we can �nd a local orthonormal basis� f#yig� near p� such that
for some positive functions� ui
r�� the vector �elds� fyi
r�g� de�ned by

yi �
#yi
ui
are orthonormal for gZ
r��

Consider the metric


���� g � dr� � gZ
r�

on I � Z� In order to simplify the discussion� we now recall a su�cient
condition for the vector� n � �

�r � to be an eigenvector for the Ricci
tensor of g�

If we view the vector �elds� yi� as being de�ned on I �Z� then their
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Lie brackets satisfy


���� �n� yi� � �
u�i
ui
yi�


���� h�yi� yj �� ni � ��

Using the standard formula for the Riemannian connection�


���� hrAB�Ci �
�

�
fh�A�B�� Ci� h�A�C�� Bi� h�B�C�� Aig�

where A�B�C are vector �elds whose inner products with respect to the
metric� g � h � i� are constant� we �nd that


��
� rnyi � ��

Thus� we have


���� hrnryiyi� yji � nhryiyi� yji�


���� hryirnyi� yji � ��


���� hr�n�yi�yi� yji � �
u�i
ui
hryiyi� yji�

Therefore� if hryiyi� yji 
 �� it follows that


���� hR
n� yi�yi� yji � ��

and in particular� that n is an eigenvector of the Ricci tensor�
Suppose that the metric gZ
r� is of the form


����� gZ
r� � u��
r�k� � � � �� u�d
r�kd�

where the tangent bundle TZ admits a decomposition�

TZ � E� � � � ��Ed�

such that� gZ
r�jEi � u�i 
r�ki� and ki annihilates Ej for i �� j�
Assume further that for the metric k��� � ��kd� whenever a geodesic�

�� satis�es ��
�� 	 Ei 
for some i� then ��
t� 	 Ei for all t� Equivalently�
for all i� the symmetric part of the second fundamental form of Ei
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vanishes� Then it follows from 
���� that for �xed r� the same is true for
the metric u��
r�k� � � � �� u�d
r�kd� Thus� it is clear that the condition
hryiyi� yji � � holds� So in this case� 
���� holds as well�

In particular� if E�� E� denote the vertical and horizontal subbundles
for a Riemannian submersion�X� � Z��m �

� Wm� with totally geodesic
�bres� then 
���� holds�

Since the �elds� #yi� are Jacobi �elds� we see that


����� Ric
n� n� �
n��X
i
�

�
u��i
ui
�

Also� from 
�����
��
�� the second fundamental from of a hypersurface�

r� Z�� is given by


����� II
yi� yj� �

	
� �
u�i
ui
n i � j�

� i �� j�

Thus� if gRic denotes the Ricci tensor of the induced metric on 
r� Z��
and fy�i g denotes the dual basis to fyig� then


����� Ric
��
�r�Z� �gRic�X

i

��u��i
ui
�
u�i
ui

X
j �
i

u�j
uj

�A 
y�i ���
Now let u � R�� R� and put


����� u � ur�

Then


���
�
u�

u
�
u�

u
�
�

r
�


�����
u��

u
�
u��

u
�
�u�

u

�

r
�

From 
������
����� it is clear that if for some � � ��


����� gRic � n � � � �

r�
�
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and in addition� for su�ciently small � � �
�� n� � ��


�����

����u�iui
���� � �

r
�


�����

����u��iui
���� � �

r�
�

then the expression in 
����� is strictly positive� indeed� it is essentially
the same as the corresponding expression for the case of a metric cone
on a space withgRic � 
n� ���

For suitable Z� conditions 
������
����� are not di�cult to achieve�
Therefore� to obtain a metric with Ric � �� the essential point is to
choose the functions� ui� such that in addition� the expression in 
�����
is positive�

Our �rst example is based on repeated application of the following
elementary lemma�

Let ��� �� �Zand C�� C�� #C�� #C� � R�� satisfy


�����
#C�

C�
� � �

#C�

C�
�


����� #C��
�
#C��
� � C��

� C
��
� �

Relation 
����� corresponds to the inequality in the relative volume
comparison theorem 
������ compare Lemma ���� and Example �����

De�ne 	 and � by


�����



#C�

C�

���

�
#C�

C�
�


����� �� � 	�� � � � ��

Let 
�� 
� � R�� Put


����� 
� � �
�

and assume


���
� ���� � �� � � � ��
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where the left�hand side de�nes ��
Given � � a � b � �� de�ne ��� �� by


�����
a

b
�



#C�

C�

�� �
��

�



#C�

C�

� �
��

�

Thus�


����� �� � 	���

�� � � is equivalent to a
b� ��
Let �� �
�� n� be as in 
������ 
������

Lemma 	��	� For 
�� 
� � � su
ciently small� there exists � �
�
��� ��� C�� C�� #C�� #C�� �� 
�� 
�� � �� such that if � � a

b � �� then for
jt�j� jt�j � �� there exist C� functions� u�� u� � �a� b� � R�� which are
C� on �a� b� n f��bg� such that �����	� �����	 hold for n � �� � �� and

u�
b� �C�b
� � 

�

�

�� � 
��� � #C�at����

u�
b� �C�b
��
�

�

�� � 
��� � #C�at����


�����


����� u��
b� � 
� � 
��C�� u��
b� � 
�� 
��C��


����� u�
a� � #C�a
� � t����� u�
a� � #C�a
� � t�����


����� u��
a� � 
�� ��� #C�� u��
a� � 
� � ��� #C��


����� �

�
��
u���
u�
� ��

u���
u�

�
�

�

�r�
��� 
r ��

�

�
b��

Proof� On �a� ��b�� put


����� u�
r� � C�b
��r����� #C�at���� u�
r� � C�b

���r����� #C�at����

Then by 
������ 
������ it follows that 
����� and 
����� hold� Also� if
�� is su�ciently small� where in particular�


���
� �� �
�

�

�

�� � 	���
�
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then on �a� ��b��


����� �

�
��
u���
u�
� ��

u���
u�

�
�
�

�
���r

�� � ��

On ���b� b�� put

u�
r� � C�b
��r���� � C�


�� � 
��

b

r �

�

�
b�� � #C�at����


�����

u�
r� � C�b
���r���� � C�


�� � 
��

b

r�

�

�
b�� � #C�at����

Then 
������ 
����� hold� Additionally� if we �x 
�� 
� su�ciently small
and then take ��� �� su�ciently small� we have 
������ 
������ Finally� it
is clear that for a

b
su�ciently small 
i�e�� ��� ��� su�ciently small� where

in particular�


����� �� � �
��
���

we have


����� �

�
��
u���
u�
� ��

u���
u�

�
�
�

�

��r

�� � �� 
on �
�

�
b� b���

This su�ces to complete the proof�

Remark 	���� If in 
������ one considers values for which the
ratio of the left�hand side to the right�hand side tends to �� while the
quantity� #C�
C�� stays bounded away from �� then the number� �� of

������ tends to zero� Thus� by 
���
�� �� � � and hence� a

b
� � as well�

compare the discussion prior to 
���
��

Example 	��� �Nonuniqueness of tangent cones
� We will
construct a smooth Riemannian metric of positive Ricci curvature on
R

	 n f�g with the following properties� Its metric space completion�
Y 	 
which is obtained by adding the origin� is the pointed Gromov�
Hausdor	 limit of a sequence of smooth complete metrics of positive
Ricci curvature on R	� At the origin� the tangent cone of Y 	 is not
unique�

As previously mentioned� the metric on R	 n f�g � R� � S� is of
doubly warped product type� with warping functions� f� h� It is the



ricci curvature ���

limit as j �
� of a sequence of doubly warped product metrics on R	�
with warping functions� fj � hj �

Our metrics arise from the Hopf �bration� S� � S� �
� S�� which we

regard as a Riemannian submersion with totally geodesic �bres� Thus�
S�� S�� S� carry the metrics� gS

�
� gS



� �	g

S� respectively� where gS
n
de�

notes the canonical metric of curvature 
 � on Sn�
The distinct tangent cones which occur at � � Y 	 can be described

as follows�
Fix � � � � � and Cf � Ch with


����� CfC
�
h � ���


����� � � Ch � � � Cf �


����� jCf � �j� jCh� �j � ��

where � is as in 
������ 
������
Put gS



� kf � kh� where kh � ��
�	g

S��� Then there is a cer�

tain ��parameter family of metrics� gS



t � joining �g
S
 � �kf � �kh and

Cfkf � Chkh� such that for all � � t � �� there exists a tangent cone
at � � Y 	� with cross section isometric to S� equipped with the metric
gS




t �
Our construction will be broken into several steps�

i
 Our warping functions� f� h� have the property that for a certain
sequence� rj � �� we have

f
r�k�
r�k � h
r�k�
r�k � �� f
r�k���
r�k�� � Cf �

h
r�k���
r�k�� � Ch�

Since the set of tangent cones is connected� this guarentees the existence
of a ��parameter family of tangent cones as above�

Initial approximations f � h� to the functions f� h� will be constructed
by applying Lemma ���� inductively 
an in�nite number of times� where
at this stage� we always choose t�� t� � ��

These approximations have jump discontinuities at the points� rj �
see 
������ 
������ 
��
��� Moreover� at the points� rj�

�
�rj � the left�

and right�hand limits of the second derivatives do not agree� see 
������

������ However� the left� and right�hand limits of the �rst derivatives
do agree at all points� see 
������ 
������ 
������
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The construction can be arranged so that the series of jumps for the
functions� f� h� can be assumed to converge as fast as we like and in
particular� as fast as a given convergent geometric series� see 
��
�� and
the discussion prior ot 
���
��

ii
 For all j� we construct smooth functions� #fj � #hj � on the interval�
��� rj�� Each of these functions is asymptotic to r � O
r��� as r � ��
Next� we de�ne functions� f

j
� hj � to be equal to

#fj � #hj � on the interval�

��� rj� and equal to f� h on 
rj�
�� These are our initial approximations
to the smooth functions fj � hj � on R

	� which de�ne the sequence of
doubly warped product metrics� the limit of which is the desired metric
on Y 	� The functions� f

j
� hj � have properties analogous to those of the

functions� f� h� above�

iii
 By adjusting the values of the functions� f
j
� hj � by suitable con�

stants� on each interval� 
ri� ri���� where 
i � j� we can remove the jump
discontinuities� thereby obtaining functions� $fj � $hj � are C�� see 
������
This corresponds to choosing t�� t� �� � in Lemma ���� 
for a suitable
inductively determined sequence of choices��

The functions� $fj � $hj� continue to have the property that the quantity
in 
����� is positive 
i�e�� positive Ricci curvature in the radial direction
for the associated doubly warped product metrics� except at the points�
ri�

�
�ri� where the second derivatives are not continuous�

iv
 Finally� by modi�ying $f ��j �
$h��j � in su�ciently small intervals con�

taining the points� ri� where 
i � j� and �
�ri� where 
i � j� we can re�

move the jumps in the second derivatives� By integration with respect
to r� we obtain C� functions� fj � hj � de�ning the sequence of doubly
warped product metrics on R	 that we are seeking� of course� it is clear
that the functions� fj � hj � can actually be chosen to be C

�� The metric
on Y 	 is determined by the corresponding functions� f� h� which are the
limits as j �
 of the functions� fj � hj �

Details of i
�iv
�
i
 Let � be as in 
������
����� and let Cf�j� Ch�j� satisfy


���
� Cf�jC
�
h�j � Cf�j��C

�
h�j�� j � �� �� � � �


����� jCf�j � �j� jCh�j � �j � � j � �� �� � � �


����� Cf��k � Ch��k�
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Cf��k� Cf��k�� � Cf��k��� Ch��k�� � Ch��k� Ch��k��

k � �� �� � � � �

�����


����� lim
k��

Cf��k � lim
k��

Ch��k � ��


��
�� lim
k��

Cf��k�� � Cf � lim
k��

Ch��k�� � Ch�

Put c � Cf�� � Ch��� Let d � �� and set f � h � q
r� on 
��
��
where


��
�� q
r� � r� 
��
c

�
�
r� � d�

�
� � � � 
��

c

�
�
� � d�

�
� � c�

Note that q
�� � c� q�
�� � �� q�� � �� In particular� the correspond�
ing warped product metric on 
��
� has positive sectional curvature�
Moreover� by taking d su�ciently large� we can make q�
�� as close to
� as we like� We choose d large enough so that the choices of 
���� 
���
below are su�ciently small 
as in Lemma ������

Let r� � 
� We will determine a sequence � � r� � r� � � � � �
and the restrictions of the functions� f� h� to the interval� 
rj��� rj�� by
applying Lemma ���� inductively� where at this stage� we always choose
t�� t� � �� For clarity� when applying Lemma ���� to determine the
value� rj��� we will add the subscript� j� to the functions and constants
which appear in that lemma�

Speci�cally� if rj has already been speci�ed� we determine 
��j � 
��j
as in 
��
�� and apply Lemma ����� with bj � rj and with remaining
data as given below� in order to determine aj � ���j� ���j� We then set
rj�� � aj � Thus� in general� rj�� � aj � bj���

For j � �� we choose 
���� 
���� such that if for the data as in 
��
���

��

�� we determine u���� u��� as above and set


��
�� f � u���� h � u��� 
on 
r�� ����

then


��
�� lim
r���

f � � lim
r���

f �� lim
r���

h� � lim
r���

h��

For j � �k� k � �� � � � � we use t���k� t���k � ��

C���k � Cf��k

�
� #C���k��

�
� C���k � Ch��k �

�
#C���k��

�
�



��� jeff cheeger � tobias h� colding


��
�� #C���k � Cf��k��� #C���k � Ch��k���

For j � �k � �� k � �� �� � � � � we use t���k��� t���k�� � ��

C���k�� � Ch��k�� �
�
#C���k

�
� C���k�� � Cf��k�� �

�
#C���k

�
�


��

� #C���k�� � Ch��k��� #C���k�� � Cf��k���

Observe that the relations for j � �k� j � �k��� are consistent with
one another 
the values in parentheses are redundent� they are provided
for the convenience of the reader��

For all j � �� we determine 
��j � 
��j inductively� by setting


��
�� 
��j � ���j��� 
��j � ���j���

Thus� we have also� �j � 	j��� �j � �j���
Finally� we put


��
�� f � u���k� h � u���k 
on 
r�k��� r�k���

and


��
�� f � u���k��� h � u���k��� 
on 
r�k��� r�k�����

By 
������ 
������ 
��
��� we have for all j�

&j
f�
def
� f
rj�� lim

r�r�j

f � 
���j
�

�

�j���j � �j�j���Cf�jrj�


��
�� &j
h�
def
� h
rj�� lim

r�r�j

h � 
���j���

�

�j�j � �j���j���Ch�jrj �

where the �rst subscript in ����� is to be take mod ��
By 
������
����� and 
��
��� we have for all j�


����� lim
r�r

�

j

f � � lim
r�r�j

f �� lim
r�r�j

h� � lim
r�r�j

h��

Also� by 
������


����� �



f ��

f
� �

h��

h

�
� � 
r �� rj �

�

�
rj��
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ii
We de�ne nonnegative functions� #fj � #hj on ��� rj� which are strictly
positive on 
�� rj�� as follows� Let GC be a smooth nonnegative function
on ���
�� such that GC � � on 
��
�� GC
�� � �� G

�
C
�� � �� G

��
C
�� �

��Assume in addition that��C�� � G��
C � � on 
��
� and that for some

�xed function� G� on ���
�� with say jG�
r�� �j � e�r � jG�
r�j � e�r �
we have


����� GC
r� � CG
r� 
on ���
���

Now put

#fj � r�jGCf�j 
r
��
j r� 
on 
��

�

�
rj ��

#fj � r�jGCf�j 
r
��
j r� �

Cf�j
� � 
���j�j���j��G�
Cf�j

r��j �

rj

r �

�

�
rj�

��


on 

�

�
rj � rj���

#hj � r�jGCh�j
r
��
j r� 
on 

��

�

�
rj ���

#hj � r�jGCh�j 
r
��
j r� �

Ch�j
� � 
���
j����j�j �G�

Ch�j

r��j �

rj

r �

�

�
rj�

��


on 

�

�
rj � rj���


�����

In 
������ the �rst subscript of ���j is to be taken mod ��
Note that #f �j
rj� � f
rj�� #h

�
j
rj� � h
rj��

Since � � f � � �� � � h� � �� it follows easily from 
����� that
for the associated doubly warped product metric� the Ricci curvature
in directions tangent to the cross�section is positive and bounded away
from zero� independent of rj � Also� from the properties of G� together
with 
������
������ 
������ we get


����� �



#f ��j
#fj
� �

#h��j
#hj

�
� � 
r ��

�

�
rj��

which implies that the Ricci curvature in the radial direction is positive

though not� of course� uniformly bounded above��
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iii
 Note that as a consequence of 
������ 
������ 
����� 
which relect
the volume cone property for tangent cones of limit spaces with Ricci
curvature bounded below� together with Remark ����� it follows that
rj��
rj � � 
equivalently� ���j � ��� Indeed� this property is consistent
with the fact that for such spaces� tangent cones are metric cones� In
particular� we can certainly assume


���
� j&j��
f�j �
�

�
j&j
f�j� j&j��
h�j �

�

�
j&j
h�j�

Indeed� since rj�� �
�
�rj � this is virtually automatic� Thus� if we set


����� $fj j��� rj� � #fj �

and for i � j�

$fj j
ri� ri��� � f � #f
rj�� lim
r�r�j

f 
rj� �

j��X
�
i

&�
f��


����� $hj j
ri� ri��� � h� #h
rj�� lim
r�r�j

h
rj� �

j��X
�
i

&�
h��

then $fj � $hj are of class C�� Similarly� we can assume that the properties
corresponding to 
������
����� hold� By Lemma ���� 
where now� we
no longer have t�� t� � �� we get


����� �



$f ��j
$fj
� �

$h��j
$hj

�
� � 
r �� rj �

�

�
rj��

iv
We can remove the jump discontinuities in the functions� $f ��j �
$h��j �

by modifying them by linear interpolation� in arbitrarily small neighbor�
hoods of the points� frig 
where i � j� and f��rig 
where i � j�� Call the
resulting functions f ��j � h

��
j � and let the corresponding functions� fj � hj�

be obtained by integration with respect to r� subject to the conditions�
fj
�� � hj
�� � �� f �j
�� � h�j
�� � �� The modi�cations in the second
derivatives can be performed on intervals whose size decreases rapidly
enough to ensure that fj � hj satisfy 
������
����� and for all r � 
��
��
we have


����� �

�
f ��j
fj
� �

h��j
hj

�
� ��
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Moreover� limj�� fj � f � limj�� hj � h� where f� h satisfy 
������

����� and for all r � 
��
�� we have


����� �

�
f ��

f
� �

h��

h

�
� ��

Now� by considering the doubly warped product spaces correspond�
ing to f
fj� hj�g and to 
f� h�� we obtain the limit space� Y

	� with the
properties which were asserted�

When the volume is not subjected to an a priori lower bound� the
situation is much less constrained than when such a bound is in force�
As a consequence� examples illustrating various new phenomena are not
di�cult to come by�

Let S� � S� �
� S	 denote the Hopf �bration� If S�� S�� S	 carry the

metrics� gS


� gS

�
� �	g

S� � then the map� �� is a Riemannian submersion

with totally geodesic �bres� Put gS
�
� k� � k�� where k� � ��
�	g

S���

Recall that the metric� gS
�

� � ��k� � k�� has uniformly positive
Ricci curvature� for all � � � � �� To see this� view the �bration�
S� � S� �

� S	� as a principle bundle� Then we can obtain a Riemannian
submersion� S� � S� � S�� by taking the quotient map associated to
the diagonal action of the Lie group� S�� on the product� S��S�� Here�
S� has metric gS

�

� and S� � S� has metric gS
�
� ��gS



� where � � �
��

and �
�� � � as � � �� Since the Ricci curvature of gS
�
� ��gS



is

uniformly positive� the above mentioned fact is a direct consequence of
O�Neill�s formula� see �����

More precisely� as � � �� the sectional curvatures of planes which are
contained in the �bre� S�� are equal to ���� the curvatures of horizontal
planes approach � and the curvatures of planes spanned by a horizontal
vector and a vertical vector approach ��

We will now give an example of a collapsed limit space which is
actually a smooth Riemannian manifold such that it� together with its
renormalized limit measure� can be regarded as having positive Ricci
curvature in a generalized sense� although not in the classical sense�

Example 	��� �Smooth limit spaces
� Let h be a smooth
positive function on ��� ��� such that


�����

�����h
�

h

����� � �

r
�
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�����

�����h
��

h

����� � �

r�
�

Here� � is so small that the doubly warped product metric in 
���
�
below has positive Ricci curvature in directions tangent to the factor�
S��

Of course� we can also arrange that �h��

h
is somewhere negative� For

such values of r� the Ricci curvature of the metric


����� dr� �
�

�
h�gS

�
�

is negative in the radial direction�
Now choose � � � � � such that the doubly warped product metric

on R��


���
� dr� � 
�r�����k� � h�k��

has strictly positive Ricci curvature for all r � �� provided � is su��
ciently small�

As in Example ���� the metric in 
���
� can be truncated at r � r��
where


����� �r���� � h
r���

and smoothed to produce a metric of positive Ricci curvature on the
disk� D�� This metric can be doubled and smoothed at the equator to
give a metric� g�� of positive Ricci curvature on S�� Then as �� �� we

have 
S�� g��� 
S�� dr�� h�
�	g
S����

Although the limit metric in 
���
� does not have positive Ricci
curvature in the usual sense� it together with its renormalized limit
measure� �� does have this property in a generalized sense� compare
Appendix �� The point here is that various properties of manifolds with
a de�nite lower Ricci curvature bound 
e�g� existence of 
�dense sets
of bounded cardinality� Abresch�Gromoll inequality� splitting theorem�
remain valid for Gromov�Hausdor	 limit spaces and their renormalized
limit measures� even in the collapsed case�

The following example shows that objects which are shaped like
horns can appear as collapsed limit spaces� These objects contain in�
�nitely many distinct geodesics which are mutually tangent� for Alexan�
drov spaces� this does not occur�
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Example 	��� �Mutually tangent geodesics� lower dimen�
sional tangent cones� horns
� If in the previous example� we
replace the function h by r���� where


����� ���
�� �� � �

� � 
� � ��

then we obtain the limit metric�


����� dr� � 

�

�
r�����gS

�
�

A warped product metric of this type is called a metric horn� For the
corresponding 

�dimensional� limit space� Y �� the tangent cone at the
origin is a half line� Thus� geodesics emanating from the origin are all
mutually tangent and 
��
�� for � � H�� k � 
� fails to hold� compare
Section ��

Consider on the other hand� the space� Y �
j � obtained by adjoining 
at

the origin� a segment� ��j� ��� of the negative real axis� to the space� Y ��
above� Given j su�ciently large and � � � su�ciently small� it follows
from the quantitative generalization of the splitting theorem� Theorem
���� of ��
�� that the space� Y �

j � can not arise as a Gromov�Hausdor	
limit of a sequence� fMn

i g� with RicMn
i
� �
n � ����

In fact� one can show that no space� Y �
j � can arise as a limit of any

sequence� Mn
i � with RicMn

i
� 
n � ��H � �
� This will be discussed

in �����

Next we construct an example of a limit space� Y �� with an isolated
singular point� for which every metric cone� dr�� �

	�
�r�gS

�
� where � �

� � �� occurs as a tangent cone� Hence� the half line occurs as a
tangent cone as well� The number� �

	 � which occurs in this metric can
be increased� but it can not be replaced by a number larger than �

� � see

���
��

Example 	�	� �Points with nonunique tangent cones of dif�

ferent dimensions
� Let fCh�jg satisfy


����� Ch��i�� � Ch��i�


����� lim
i��

Ch��i � ��


����� Ch��i�� � Ch��i���
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����� lim
i��

Ch��i�� � ��

From the discussion preceding Example ����� it follows that


���
� Ric� � �� � o
���

Here Ric� denotes the Ricci tensor of the metric� gS
�

� � In particular�
Ric� � �� the Ricci curvature of S�� This guarentees that the Ricci
curvatures of the metrics constructed below are nonnegative 
and thus�
bounded away from�
� in directions tangent to the cross�section� Note
that given �� � � �� Ch��i � �� � and � � 
� j�� � �
�� ��� the metric�


����� 
j��r�����k� � 
Ch��ib
��r�����k��

has positive Ricci curvature� in directions tangent to the cross�section if


����� j��r�� � Ch��i

�r
b

��
�

Moreover� the metric


����� 
j��r�����k� � 
Ch��i��b
�r�����k��

has positive Ricci curvature in directions tangent to the cross�section if


����� j��r�� � Ch��i��

�
b

r

��
�

In what follows� we will consider a sequence of metrics indexed by j�
As in Example ����� we can �nd sequences� f
�g� fb�g� such that the

sequence of metrics given by

dr� � 
j��r�����k� � 
Ch��ib
��i
�i r����i��k�


on 
b�i��� b�i���

�����

dr� � 
j��r�����k� � 
Ch��i��b
��i��
�i�� r����i����k�


on 
b�i��� b�i�����

�����

has the following property� De�ne rj by


����� j��r���j �

�
Ch��ib

��i
�i r����ij j � �i�

Ch��i��b
���i��
�i�� r

����i��
j j � �i� ��
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Then the restriction of the metric in 
������ 
����� to the interval� �rj� ���
can be smoothed to a metric of positive Ricci curvature�

By considering the limit as j �
 of the above sequence of trunca�
tions and smoothings� we obtain a limit space� Y �� with an isolated sin�
gular point� for which every metric cone� dr�� �

	�
�gS

�
�where � � � � ��

occurs as a tangent cone� Hence� the half line occurs as a tangent cone
as well�

Remark 	���� With more work one can actually construct limit
spaces for which the points with nonunique tangent cones are dense�

Example 	��� �Complete manifolds
� By modifying the con�
struction of the previous example in an obvious fashion� we obtain a
complete metric of positive Ricci curvature on R�� for which any cone
dr� � �

��
�r�gS

�
� � � � � �� occurs as a tangent cone at in�nity� Hence

the half line occurs as a tangent cone as well�

Example 	��
 �Tangent cones which are not metric cones
�

Let h be a positive function such that say�


����� jh�
�

�
j � ��


����� jh�j� jh��j� jh���j � ��

As in our previous examples it is clear that we can construct a metric
of positive Ricci curvature on R�� which� for r � �� is of the form


����� dr� � 
r�����k� � 
rh
log r��
�k��

These metrics have tangent cones at in�nity of the form


����� dr� �
�

�

rh��

�gS
�
�

If� for instance� h is periodic� then h� is some translate of h itself� But
unless h is constant� no tangent cone is a metric cone�

Note that R� equipped with metric in 
����� is itself a limit space�
Y �� with an isolated singular point at which no tangent cone is a metric
cone�

Example 	���� �Topologically singular spaces
� In the pre�
vious example the limit space was topologically nonsingular� However�
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one can easily produce singular limit spaces with analogous properties�
by starting with a suitable ALE space in place of R��

Let f
Mni
i � gi�g be a sequence of manifolds of positive Ricci curvature

converging to a �nite dimensional limit space� Of course� it may happen
that ni �
� In this case 
not surprisingly� so much information can be
lost in the limit that the limit space cannot be legitimately regarded as a
generalized space of nonnegative Ricci curvature� It follows in particular
that the estimates in the �almost splitting� theorem 
Theorem ���� of
��
�� cannot be made uniform in the dimension� n� of Mn�

The following example illustrates what can go wrong�

Example 	���� �dimension �
�� Consider a warped product
space� R�f S

�� where S� has metric gS
�
and


������ f j
�
���� 

�

�
�


������ f j���
� 
 ��


������

����f �f
���� � ��

Let fhjg be a sequence of functions� hj � 
�j� j�� R�� such that


����
� lim
r��j

hj � lim
r�j

hj � ��


������ �
h��j
hj

� ��


������ lim
j��

hj � �� 
uniformly�

and dr�� h�jg
S
nj
� de�nes a smooth metric of strictly positive curvature

on Snj���
For nj su�ciently large� the doubly warped product metric


������ gj � dr� � h�jg
S
nj
� f�gS

�
�

on Snj�� � S�� has positive Ricci curvature� As j � 
� the sequence�
f
Snj�� � S�� gj�g� converges in the pointed Gromov�Hausdor	 sense
to the smooth warped product space� R�f S

�� Although this space
contains geodesic lines� it does not split isometrically and thus� cannot
be legitimately considered to have nonnegative Ricci curvature in any
generalized sense�
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Appendix �� Reifenberg�s method and some consequences

In this appendix� we formulate an intrinsic version of Reifenberg�s
theorem� �
��� and draw a number of consequences� We thank Bruce
Kleiner for bringing Reifenberg�s theorem to our attention in connection
with the results of ���� and Fred Almgren for some helpful conversations
concerning it� We are also grateful to Stephen Semmes� for discussions
and for pointing out his paper� �
��� and book� ����� which deal with
situations closely related to Reifenberg�s�

Let 
Rk���r denote the set of points such that for some u � r� 
����
holds for all s � 
�� u� and Rk�X � Rk� Thus� 
Rk�� � �r
Rk���r� Let
� � Rn� Let the notation� �� be as in previous sections�

TheoremA����� There exists �
n� � �� with the following property�
Let 
Z� �� be a complete metric space such that for some z � Z� and
� � �
n�� we have z� � 
Rn���r for all z� � B�
z� and r � � � z�� z�
Then there exists a topological imbedding� F � B�
�� � B�
z�� such
F 
B�
��� � B��

z�� where � � �
�jn�� Moreover� the maps F� F��

are H�older continuous� with exponent� 	 � � � �� If� in addition� Z
is an n�dimensional Riemannian manifold� then F can be taken to be a
smooth imbedding�

Next� we will give some global counterparts of Theorem A�����
LetM
n� �� r� denote the collection of isometry classes of complete

separable metric spaces� 
Z� ��� such that z � 
Rn���r� for all z � Z� Let
�Z� denote the isometry class of Z�

TheoremA����� There exists �
n� � �� such that if �Z� � M
n� �� r��
for � � �
n�� then there exists a smooth Riemannian manifold� 
Wn� g�
and a homeomorphism� F � Wn � Z� such that F� F�� are H�older
continuous� with exponent� 	 � ���� where � � �
�jn��

Let �Z��� �Z�� � M
n� �� r�� where � � �
n�� Let 
Wn
� � g��� 
W

n
� � g��

denote the Riemannian manifolds whose existence is asserted in Theo�
rem A�����

Theorem A����� The number� �
n� � �� can be chosen such that
if dGH
Z�� Z�� � �
n�� then we can choose 
Wn

� � g�� � 
W
n
� � g��� More�

over� if Z�� Z� are smooth n�dimensional Riemannian manifolds� then
for this Wn

� � Wn
� � the maps F�� F� can be chosen to be di�eomor�

phisms� Thus� Z� and Z� are di�eomorphic in this case�

LetM
n� �� r� d�denote the subset ofM
n� �� r� such that diam
Z� �
d� As a direct consequence of Theorem A���� we obtain�
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Theorem A����� Fix � � � � �
n� and r� d � ��

i	 There exist at most N
n� r��d� �
 bi�H�older equivalence classes
of metric spaces� Z� with �Z� � M
n� �� r� d��

ii	 There exist at most N
n� r��d� � 
 di�eomorphism classes of
n�dimensional Riemannian manifolds� Zn� with �Zn� � M
n� �� r� d��

Apart from some simple 
and inessential� technicalities 
concerning
points near �B�
z�� the proof of Theorem A���� is identical to that of
Theorem A����� Since the additional statements in Theorems A�����
A���� are direct consequences of the proof of Theorem A����� we will
only prove Theorem A�����

Before proving Theorem A����� we will collect some consequences
of Theorems A�����A���� for Ricci curvature� For these� we need the
following result which summarizes some of the conjectures of Anderson�
Cheeger that were proved in ����� 
Recall that the relevant sets in parts
ii�� iii� below were de�ned prior to Theorem �����

Theorem A���
 
������ For all � � �� there exists r � r
n� ���
� � �
n� �� � �� with the following properties� Let

RicMn � �
n � ��� p �Mn

and r� � r�
i	 If


A����� Vol
Br�
p�� � 
�� �� Vol
Br�
����

then p � 
Rn���r��
ii	 If p � 
WRn���r�� then


A����� Vol
Br�
p�� � 
�� �� Vol
Br�
����

iii	 If p � 
WRn���r�� then q � 
Rn���s� for all q � Br�
p��
s � 
�� ��r� � q� p�

By combining Theorems A���� and A���
� we get the following two
theorems which sharpen Perelman�s theorem� �����

As usual� let 
Y n� y� be the pointed Gromov�Hausdor	 limit of a
sequence� f
Mn

i � pi�g� satisfying 
����� 

����

Theorem A���	� For all � � �� there exists r � r
n� ���
� � �
n� �� � �� such that if for some r� � r� either y � 
WRn���r� or
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Hn
Br�
y�� � 
�� �� Vol
Br�
���� then there exists a topological imbed�
ding F � Br�
�� � Br�
y�� such that F 
Br�
��� � B���
�r�
y�� where
� � �
�jn�� The maps� F� F�� are H�older continuous� with exponent�
	 � �� ��

Theorem A����� Let the assumptions be as in Theorem A����� If
Y n � Mn is a smooth Riemannian manifold satisfying
RicMn � �
n � ��� then the map� F � can be taken to be a smooth
imbedding�

By arguing as in ����� ��
� 
see also ��
� Section 
�� but letting Theo�
rem A���� play the role of Perelman�s theorem� we obtain the following
di�erentiable sphere theorem for Ricci curvature and volume�

Theorem A������ There exists �
n� � �� such that if
RicMn � n��� Vol
Mn� � 
���
n��Vol
Sn�� then Mn is di�eomorphic
to Sn�

Similarly� we have the following noncompact analog of Theorem
A������ the proof of which is a minor variation on that of Theorem
A����� see Remark A������ As in 
��
� let Vn��
�� denote the volume of
the unit ball in Rn�

Theorem A������ There exists �
n� � � such that if RicMn � �
and Vol 
Br
p�� � 
�� �
n��Vn��
��rn� for all p � Mn� r � �� then Mn

is di�eomorphic to Rn�

We also obtain a sharpening of the result of ���� concerning one
of the conjectures of Anderson�Cheeger as well as a sharpening of the
statement of Gromov�s conjecture proved in �����

Theorem A������ Let the compact smooth Riemannian manifold�
Mn� be the Gromov�Hausdor� limit of a sequence� fMn

i g� satisfying
����	� Then Mn

i is di�eomorphic to Mn� for all i su
ciently large�

Theorem A������ There exists �
n� � � such that if Mn is a com�
pact n�dimensional Riemannian manifold� with RicMn
diam
Mn��� �
��
n� and b�
M

n� � n� then Mn is di�eomorphic to the torus Tn�

After introducing some notation� we will proceed to the proof of
Theorem A����� Let J � A � R

n� where A 	 Rn� For some suitable
sequence of positive constants� a�� a�� � � � � and t � �� write jJ jC��t � c�
if j��J j � aj�jt

��j�jc� for every multi�index ��

Proof of Theorem A����� By scaling� with no loss of generality� we
can assume r � ���



��� jeff cheeger � tobias h� colding

Let � � �
�jn�� where the particular function with lim
���

�
�jn� � �

might change from line to line�
We will show that there exists a sequence� f
Wn

i � �i�g� where W
n
i

is a smooth manifold and �i is a nonnegative symmetric function on
Wn

i �W
n
i � which vanishes on the diagonal� such that there are sequences

of di	eomorphisms� hi � W
n
i � Wn

i��� and 
not necessarily continuous�
maps� fi �W

n
i � Z� such that for all i� the following hold�

i� There exists a Riemannian metric� gi� on Wn
i � with associated

distance function di� such that �i
w
i
�� w

i
�� � ��i implies �i
w

i
�� w

i
�� �

di
w
i
�� w

i
���

ii� The maps� hi� satisfy


A������ ��
�i � �i�� � hi � �

�i�

iii� The maps� fi� satisfy


A����
� j� � fi � �ij � ��
�i�

iv� The maps� fi�� � hi� fi� satisfy�


A������ �
fi�� � hi� fi� � ��
�i�

v� The range of the map� fi� is �

��dense�

vi� If moreover� 
Z� �� is an n�dimensional Riemannian manifold�
then for i su�ciently large 
possibly depending on 
Z� ��� the map� fi�
can be taken to be a di	eomorphism�

Claim� It su�ces to construct f
Wn
i � �i�g� fhig� ffig satisfying

i��vi��

Proof of Claim� We begin by observing that if 
Z� �� is an n�
dimensional Riemannian manifold� then


A������ Fi � fi � hi�� � � � � � h�

is a di	eomorphism� Fi �Wn
� � Z� for i su�ciently large�

Let w�
�� w

�
� � Wn

� � with �
w
�
�� w

�
�� � �� Put


A������ s� � ��
w
�
�� w

�
���


A������ si � �i
hi�� � � � � � h�
w
�
��� hi�� � � � � � h�
w

�
����
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By iii�� iv� we have


A������ si � ��
�i � si�� � si � ��

�i�

In particular� lim
i��

si �� s� �� ��
w
�
�� w

�
�� exists�

Since Z is complete� it follows from iv� that lim
i��

Fi �� F exists and

from iii�� we get


A������ � � F � ���

Moreover� by v�� F� is surjective� Thus� it will su�ce to show that ��
is a metric on Wn

� and that this metric is bi�H�older equivalent to d��
By i�� it su�ces to compare �� to ���

By ii�� we have


A������ ��
si � si�� � �

si�

If we �x j and use 
A������ for j � i and 
A������ for j � i� we get

for all j�


A������ ��
js� ���
�j � s� � �
js� � ��

�j �

Clearly� we can chose j such that


A������ �
js� � �
�j �


A����
� �
�j���s� � �
��j����

Then 
A����
� implies


A������ �s
�

���
� � ��j �

which together with 
A������� 
A������ gives


A������ s� � �
� � ��s
�

���
� �

Similarly� choosing j such that


A������ ��
�j���s� � �
��j����


A������ ��
js� � �
�j �
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we �nd from 
A�������


A������ s
�

���
� � ��j �

and from 
A������� 
A������� 
A�������


A������
�

�

����s

�
���

� � s��

By 
A������� 
A������� �� is bi�H�older equivalent to d� with exponent�
	 � ����

Before constructing the data in i��v� above� we recall a well�known
fact about sets of points in Euclidean space�

Let Q � fqig be a minimal ��dense set in BR
�� 	 Rn� R � �� Let
Q� 	 Q be a maximal subset such that qi� � qi� � ���� for qi� � qi� �
Q�� i� �� i�� Similarly� let Q� 	 Q n Q� be a maximal subset such
that qi� � qi� � ���� for qi� � qi� � Q�� i� �� i�� Then if Q�� � � � � QN are
constructed similarly by induction� we have N � N
n�� Note that if
qk � Qk � then for any �� we have B��
qk��B��
q�� �� �� for at most one
q� � Q��

Clearly� we can assume that the number� �
n�� of the hypothesis has
been chosen such that if fzig is minimal ��dense subset set of Z� then
property of the preceding paragraph holds� for some possibly di	erent
N � N
n��

We now construct the data in i��v�� starting with the construction
of the manifolds� Wn

i � These will be obtained by gluing together cer�
tain balls� B����i
�i�j�� where �i�j is the origin in some copy of Euclidean
space� Rn

i�j� The gluings are determined by di	eomorphisms�
$Ii�j��j� 
de�

�ned for certain pairs of indices� j�� j��� The domain of $Ii�j��j� is an open
subset of B����i
�i�j��� and its range is an open subset of B����i
�i�j���
The consistency condition� $Ii�j
�j� �

$Ii�j
�j� �
$Ii�j��j� � is required to hold

on the intersection of the domains of $Ii�j
�j� and $Ii�j
�j� � $Ii�j��j� �
It will be clear in what follows that there is a certain degree of

freedom in the choice of the numbers 
��� �� �� �� �� which appear in
the construction� All that matters is that certain inequalities between
these numbers hold�

We begin by successively choosing �nite subsets� X� 	 X� 	 � � � �

such thatXi is a minimal �
�i�dense subset of Z� We writeXi �

NiS
j
�

Qi�j �

where Ni � N and the sets� Qi��� � � � � Qi�Ni� are de�ned analogously to
the sets� Qj � above�
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For all i� j� we choose a copy of Euclidean space� Rn
i�j� with origin

�i�j � For all xi�j � Xi� choose ��
�i�Gromov�Hausdro	 approximations�

	i�j � B�����i
�i�j� �� B�����i
xi�j�

and

�i�j � B�����i
xi�j� �� B�����i
�i�j��

such that �i�j � 	i�j � Id � ��
�i and 	i�j � �i�j � Id � ��

�i�
The maps $Ii�j��j� will be de�ned only for pairs of indices j�� j�� for

which


A������ B����i
xi�j�� � B����i
xi�j�� �� ��

For such pairs� the intersection� B�����i
xi�j���B�����i
xi�j��� has a def�
inite size 
it contains a ball of radius �� � ��i��

Since the intersection has a de�nite size and the maps� 	i�j� � �i�j� �
almost preserve distances� it is clear that there exist isometries� Ii�j� �j� �
R
n
i�j�

�� Rn
i�j�
� such that


A������ Ii�j��j� � �i�j� � 	i�j� � ��
�i 
on say B����i
�i�j����

Now suppose that for some j�� j�� j�� the intersection

B����i
xi�j�� � B����i
xi�j�� � B����i
xi�j
�

is nonempty� Then

B�����i
xi�j��� B�����i
xi�j�� �B�����i
xi�j
�

has a de�nite size and from 
A������� it is clear that


A������ Ii�j
�j� � Ii�j��j� � Ii�j
�j� � ��
�i 
on say B����i
�i�j����

We will de�ne maps� eIi�j��j� � by suitably modifying the maps� Ii�j��j� �
in such a way as to guarentee that for j�� j�� j� as above� the relation�eIi�j
�j� � eIi�j��j� � eIi�j
�j� � holds on an appropriate subset�

A given map� Ii�j��j� � may have to be modi�ed more than once 
but

� N� times� in the course of producing the �nal map� eIi�j��j� � After the
�rst modi�cation has been performed� we use the notation� eIi�j� �j� � for
the resulting map� Thereafter� we refer to all additional modi�cations
as modi�cations of the map� eIi�j��j� � Since any such map undergoes at
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most a de�nite number of such modi�cations� we can assume that 
 and
hence �� are so small that at every stage of the process� we have


A����
�
��eIi�j��j� � Ii�j��j�

��
C� ���i

� � 
on B����i
�i�k����

By restricting the domains of the maps� eIi�j��j� � to subsets of the
balls� B����i
�i�j��� we will obtain the desired maps�

$Ii�j��j� �
The modi�cations are e	ected by the proceedure of ����� where a

situation closely related to the one considered here is treated� Thus� we
will refer to ���� for certain details 
see also ������

If xi�k� � Qi��� xi�k� � Qi��� are such that

Ii�k� �k� 
B	���i
�i�k��� �B	���i
�i�k��

is nonempty� we put eIi�k��k� � Ii�k��k� � Note that for xi�k� �xed� there is
at most one such xi�k� � Qi���

Let xi�k� � Qi��� xi�k
 � Qi�� be such that

Ii�k
 �k� 
B	���i
�i�k��� �B	���i
�i�k
�

is nonempty� Then we put eIi�k
�k� � Ii�k
�k� � Suppose that in addition�eI��i�k��k�

�
B�	���i
�i�k��

�
� eI��i�k
�k�

�
B�	���i
�i�k��

�
�� ��

Then� as in ���� 
see also ����� by means of the Isotopy Extension
Theorem� we modify the map� Ii�k
�k� � to obtain a di	eomorphism�eIi�k
�k� � Rn

i�k�
� Rn

i�k

� such that on

eI��i�k��k�

�eI��i�k
�k�

�
B�	� �

N
 ��
�i
�i�k��

�
� B�	� �

N
 ��
�i
�i�k��

�
� eI��i�k
 �k�

�
B�	� �

N
 ��
�i
�i�k��

�
�


A������

we have eIi�k
�k� � eIi�k��k� � eIi�k
�k� �
Moreover� it is easy to see that if 
 and hence � are su�ciently

small� then by further decreasing the radii of the relevant balls� we
obtain the following� Let j�� j�� j� by any of the � possible permutations
of k�� k�� k�� Then on

eI��i�j��j�

�eI��i�j
�j�

�
B�	� �

N
 ��
�i
�i�j��

�
� B�	� �

N
 ��
�i
�i�j��

�
�eI��i�j
�j�

�
B�	� �

N
 ��
�i
�i�j��

�
�


A������
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we have eIi�j
�j� � eIi�j��j� � eIi�j
�j� �
Note that the balls occuring in 
A������ have radii which are smaller

than those in 
A������� which in turn� are smaller than those in the
relation that preceds it� Indeed� in what follows� at every stage at
which our maps are modi�ed� we will shrink by a de�nite amount� the
radii of all balls 
with centers� �i�j� that are used to de�ne the sets on
which all of our consistency conditions are required to hold� In addition
to the reason which we have just mentioned 
i�e�� to obtain all of the
above � relations� eIi�j
 �j� � eIi�j��j� � eIi�j
�j� �� are two additional reasons
why the radii must be decreased�

First of all� this is neccessary in order to obtain the new consistency
relations which are produced at any given stage of the construction� see
���� for details�

Secondly� decreasing the radii plays a role in ensuring that a mod�
i�cations performed at a given stage do not destroy any consistency
relations which were obtained at earlier stages� This point will be ex�
plained at length below�

We now treat the points� xi�k� � Qi�	� in a fashion similar to that in
which the points� xi�k
 � Qi��� were treated above�

Thus� if xi�k� � xi�k� are such that Ii�k��k� 
B	���i
�i�k����B	���i
�i�k��

is nonempty� we put eIi�k� �k� � Ii�k��k� �

Next� we modify all appropriate maps� Ii�k��k� to obtain the maps�eIi�k��k� such that on
eI��i�k��k�

�eI��i�k��k�

�
B�	� �

N
 ��
�i
�i�k��

�
� B�	� �

N
 ��
�i
�i�k��

�
� eI��i�k��k�

�
B�	� �

N
 ��
�i
�i�k��

�
�

we have eIi�k��k� � eIi�k��k� � eIi�k��k� �
Then� we modify all appropriate maps� Ii�k��k
 � so as to obtain maps�eIi�k��k
 such that the relations eIi�k��k
 � eIi�k
�k� � eIi�k��k� and �nally�eIi�k��k
 � eIi�k
�k� � eIi�k��k� � hold on the corresponding subsets 
de�ned

by balls whose radii have been appropriately decreased��

In particular� a map� Ii�k� �k
 � may have to be modi�ed twice in or�

der to produce the �nal map� eIi�k��k
 � since there are two consistency
relations which must be satis�ed�

As previously mentioned� the modi�cation proceedure of ���� guar�
entees that modi�cations performed at a given stage� do not destroy
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consistency conditions which have been obtained at a previous stage�
The reasons for this are the following�

First of all since every modifcation can be assumed to be by as small
an amount as we like 
by making 
 su�ciently small� and in addition� the
radii of every ball is shrunk by a de�nite amount when each modi�cation
is performed� it follows easily that the new domain on which a previously
established consistency relation is required to hold� is actually a subset
of the previous domain of that consistency relation�

Given what has just been explained� it su�ces to check the following
point which we illustrate by using the indices� k�� k�� k�� k	� which were
considered above� the argument in the general case is precisely the same�

Suppose we have already established the relation�

eIi�k� �k
 � eIi�k
�k� � eIi�k��k� �
and must now perform a second modi�cation on the map� eIi�k��k
 � in
order to establish the relation� eIi�k��k
 � eIi�k
�k� � eIi�k��k� � Suppose that
there exists

mi�k� � B�	� 	
N
 ��

�i
�i�k�� � mi�k� � B�	� 	
N
 ��

�i
�i�k���

such that eIi�k��k
 � eIi�k
�k�
mi�k�� �
eIi�k��k�
mi�k���eIi�k
�k�
mi�k�� �

eIi�k
�k�
mi�k���

and eIi�k��k�
mi�k�� � B�	� 	
N
 ��

�i
�i�k���

We claim that in this case� we actually have� eIi�k��k
 �eIi�k
 �k�
mi�k�� �eIi�k��k�
mi�k��� Granting this for the moment� we note that the modi��
cation proceedure of ���� is such that in such an instance� the second
modi�cation of the map� eIi�k��k
 � will leave the value� eIi�k��k

mi�k
�� un�
changed� see ���� for details� This su�ces to show that the second modi�
�cation does not destroy the previously established consistency relation�eIi�k��k
 � eIi�k
�k� � eIi�k��k� �

To check our claim� note that from the previously established re�
lations� we get mi�k� �

eIi�k��k�
mi�k�� and
eIi�k��k� � eIi�k��k�
mi�k�� �eIi�k��k�
mi�k��� These imply eIi�k��k�
mi�k�� � eIi�k��k�
mi�k��� Addition�

ally� since eIi�k��k
 � eIi�k
�k�
mi�k�� �
eIi�k��k�
mi�k��� by applying

eIi�k��k
 to
both sides of the relation� eIi�k
�k�
mi�k�� �

eIi�k
�k�
mi�k��� it follows that
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eIi�k��k
�eIi�k
�k�
mi�k�� �
eIi�k� �k�
mi�k�� �

eIi�k��k�
mi�k��� which establishes
our claim�

By proceeding in as above� with all xi�k� � Qi��� we obtain maps�eIi�j��j� � for all j�� j� satisfying 
A������� such that

A������

��eIi�j��j� � Ii�j��j�
��
C����i

� � 
on B����i
�i�j���

and such that the following holds�
Let


A������ dom bIi�j��j� � fw � B����i
�i�j��
�� eIi�j��j�
w� � B����i
��i�j�g�

and on this domain� put


A������ bIi�j��j� � eIi�j��j� �
As usual� put


A������ dom bIi�j
�j� � bIi�j��j� � bI��i�j��j�

�
range bIi�j� �j� � dom bIi�j
�j�� �

Then for � � �
n� su�ciently small and all j�� j�� j�� we have

bIi�j
 �j� � bIi�j��j� � bIi�j
�j�

on dom bIi�j
�j� � bIi�j��j� � dom bIi�j
�j���
A������

It follows from 
A������� that the collection� fbIi�j��j�g� determines an
atlas� f�i�jg� for a smooth manifold� Wn

i � such that �i�j� ��
��
i�j�
� bIi�j��j�

and range �i�j � B����i
���
The manifold� Wn

i is essentially unique� In fact� if 	
�
i�j � �

�
i�j are a

di	erent set of � � ��i�Gromov�Hausdor	 equivalences as above� then
there exist isometries� Ji�j � R

n� Rn� with Ji�j
�� � �� such that

	�i�j � 	i�j � Jj � ��
�i� on B����i
���

and
��i�j � Jj � �i�j � ��

�i� on B����i
xi�j��

Let f��i�jg denote the atlas for the manifold� 
W
��ni � constructed as above

from the maps� f	�i�jg� f�
�
i�jg� Then for � � �
n� su�ciently small�

by modifying the maps in the collection� f
��i�j�
�� � Ji�j � �i�jg by a

small amount 
in the topology induced from j jC����i and the given
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atlases� as in ���� 
see also ����� one constructs an essentially canonical
di	eomorphism from Wn

i to 
W
��ni �

Suppose that 
Z� �� is actually an n�dimensional Riemannian mani�
fold� Then for i� su�ciently large� the collection of maps� f�i�jg� can be
choosen to be an atlas for the smooth manifold underlying� Z� Then the
maps� bIi�j��j� � will be slight modi�cations of the 
restrictions of� maps�
�i�j� ��

�i
i�j�
and as above� it follows that 
for � � �
n�� su�ciently small�

there exists an essentially canonical di	eomorphism� fi �W
n
i � Z�

Let Xi be the �
�i�dense set chosen earlier� For each xi���j � Xi���

choose xi�k�j� � Xi� such that xi���j � B��i
xi�k�j��� If in fact� xi���j �
Xi� take xi�k�j� � xi���j � Let Li�j � R

n � Rn be an isometry such that

Li�j � b�i�k�j�
xi���j� � �� Let f�i�jg be the atlas for Wn
i obtained by

putting

A������

�i�j � Li�j � �i�k�j� j 
Li�j � �i�k�j��
�� 
B��i
Li�j � �i�k�j�� 
xi���j����

As above� there exist isometries� say Ki�j � R
n � R

n� such that by
slightly modifying the maps� f���i���j � Ki�j � �i�jg� we obtain an essen�
tially canonical di	eomorphism� hi � W

n
i � Wn

i��� 
provided � � �
n��
su�ciently small��

Veri�cation of i
�vi
�

vi� From� the preceding discussion� it is clear that if Z is an n�
dimensional Riemannian manifold� and i as above is su�ciently large�
then Fi as de�ned in 
A������� is a di	eomorphism� Fi �Wn

� � Z�

Consider again the case in which Z is arbitrary�
Let f�i�jg denote a partition of unity subordinate to the cover�

ing� f���i�j 
B����i
���g� constructed in standard fashion 
from the pull�
backs via the maps� �i�j � of a standard bump function�� Put gi �P

�i�j�
�
i�j
g�� where g is the standard %at metric on R

n� Let di denote
the distance function associated to gi�

Clearly� the functions� di� and maps hi� satisfy for all i�


A������ ��
di � di�� � hi � �

di�

Starting with the collection of Gromov�Hausdor	 approximations�
f	i�jg� in obvious fashion� we can construct a map� fi � W

n
i � Z 
which

might not be continuous if Z is not an n�dimensional Riemannian man�
ifold� such that the following properties hold�

iv� For all i� 
A������ holds�
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i� De�ne points� wi
j � Wn

i by w
i
j � ���i�j 
��� Then for all i� j�


A����
� j� � fi � dij � ��
�i 
on B��i
w

i
j���

Here Br
w
i
j� denotes the metric ball of radius r with respect to the

distance function� di�
If we de�ne


A������ �i
w
i
�� w

i
�� �

�
di
w

i
�� w

i
�� di
w

i
�� w

i
�� � �

�i�
� � fi di
w

i
�� w

i
�� � �

�i�

then it follows that i� holds�

iii� Moreover� it is clear that 
A����
� holds�
ii� From 
A������� 
A������� together with 
A����
�� 
A������� we get


A�������

v� Finally� the map� F�� is surjective�

This completes the proof�

Remark A������ As previously mentioned� the proof of The�
orem A����� is very similar to the proof of the Theorem A����� Let
Mn be as in Theorem A������ It follows from ���� 
or ��
�� that for
� � c � c
n�� � � � � �
n�� after rescaling to unit size� every annu�
lus� AR�cR
p� � BcR
p� n BR
p�� is �
�jn��close to the corresponding
annulus A��c
�� 	 Rn� Write Mn � B�
p� � 
�

�
i
�A�����
������

p��� In

place of the sets� X� 	 X� 	 � � � � de�ned prior to 
A������� we consider
sets� X� 	 X� 	 � � � � such that Xi � A�����
������

p� is �

��i�dense in
A�����
������

p��� With this modi�cation� the proof of Theorem A�����
can be carried out in a manner strictly analogous to that of Theorem
A�����

Appendix �� Remarks on the synthetic treatment

of Ricci curvature

Generalizations of the notion of �smooth function� have long played
a very important role in analysis and in questions of a geometric an�
alytic nature� see e�g� ����� ����� �
��� �
��� After the pioneering work
of Alexandrov and Gromov 
���� ����� analogous notions of �generalized
Riemannian manifold� have begun to play an increasingly signi�cant
role in Riemannian geometry� In this appendix� we will discuss some
related issues in connection with Ricci curvature�
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We begin by �xing some ideas and terminology� Let us consider
metric spaces� possibly equipped with some additional structure like
a measure� Roughly speaking� we say that a set of conditions which
serve to de�ne a subclass of such metric spaces 
or associated objects�
is synthetic if these conditions do not depend on the existence of an un�
derlying smooth structure� or indeed� make any reference to the notion
of smoothness� 
More generally� our conditions should not entail any a
priori structural assumptions��

The origins of the synthetic tradition in geometry go back quite far�
More recently� questions of a geometric analytic nature� of the sort which
classically were studied in Rn� have received considerable attention in
more general synthetic contexts� see e�g� �
�� and the references therein�

Let Alex
n�H� denote the class of n�dimensional Alexandrov spaces�
X � with Alexandrov�Toponogov curvature � H � Let sec
n�H� denote
the class of n�dimensional Riemannian manifolds� Mn� with sectional
curvature KMn � H � Clearly� the former of these classes is de�ned syn�
thetically while the latter is not� Since Alex
n�H� contains sec
n�H�
and coincides with it when intersected with the class of smooth Rie�
mannian manifolds� we say that Alex
n�H� provides a strict synthetic
generalization of the class� sec
n�H�� see ���� ����� for the general theory
of Alexandrov spaces�

Let sec
n�H� denote the closure of sec
n�H� in the Gromov�Haus�
dor	 topology� This class is not de�ned synthetically� even though it
contains members more general than smooth n�dimensional Riemannian
manifolds�

In fact� for H � �� it is known that sec
n�H� �	 Alex
n�H�� see �����
However� it is not known whether there exists

N
X� �
� c
X�H � �
�

such that if X � Alex
n�H�� then X � sec
N
X�� c
X�H�� If this were
known� we would say that the class sec
N
��� c
��H� provides a resolu�
tion of singularities for Alex
n�H�� According to ���� Section ��� this
instance of the problem of resolution of singularities �presents di�cul�
ties��

If resolution of singularities holds� one can in principle study the
synthetically de�ned class by means of theorems which are proved 
ini�
tially� in the smooth case by smooth methods� but whose hypotheses
and conclusions are phrased in purely synthetic terms and are preserved
under Gromov�Hausdor	 limits� compare the proof of the Poincar�e in�
equality for limit spaces given in �����
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At present� there are only very few theorems which are known to hold
for the class� sec
N
��� c
��H��Alex
n�H�� but which are not known for
Alex
n�H�� itself�

On the other hand� for Ricci curvature� the main rigidity theorems
for Gromov�Hausdor	 limits are proved in ��
� by just this method of
resolution of singularities� In this appendix� we will discuss the issue of
possible synthetic generaliztions of these theorems and of their conse�
quences�

The generalized splitting theorem provides a particular example�
Let Ric
n�H� denote the class of smooth Riemannian manifolds� Mn�
with RicMn � 
n � ��H � In ��
�� the splitting theorem is proved for
the class� ��Ric
n��
�� Since the splitting theorem itself is not valid
for any individual class� Ric
n��
�� it is necessary to prove an �almost�
or �quantitative� splitting theorem for each 
� This implies the cor�
responding theorem for Ric
n��
� and the totality of these theorems
yields the splitting theorem for ��Ric
n��
��

For the most part� the theorems of the present paper are formulated
and proved purely synthetically 
but compare e�g� 
������
������� Thus�
most of these results hold for certain nonstrict synthetic generalizations
of the class� Ric
n�H�� in which various subsets of the relative volume
comparison and almost rigidity theorems are assumed 
axiomatically�
to hold� All of these generalizations contain the class Ric
n�H�� If� for
example� we assume the integral Toponogov theorem of ��
�� as formu�
lated with respect to the measure� � 
compare ���������� we emphasize
the connection with Alexandrov space theory and obtain as a particular
synthetic consequence� the splitting theorem and 
at least a weakened
version of� Theorem ����

After recalling some further background� we will point out a par�
ticular strict synthetic generalization of the class� Ric
n�H�� for which
the almost rigidity and integral Toponogov theorems are not assumed
axiomatically to hold� However� it turns out that any theory for which
such results are valid� must in one way or another� be based on rather
strong additional assumptions�

The idea that there should be a synthetic theory of spaces whose
Ricci curvature is bounded below in some generalized sense� goes back
to Gromov� whose compactness theorem provides the �rst nontrivial
examples of such spaces� ����� �����

Fukaya� observed the existence of renormalized limit measures and
conjectured the role that they should play in connection with the conti�
nuity of the spectrum of the Laplacian under measured Gromov Haus�
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dor	 convergence� see ���� and� for the proof of the conjecture� �����
The �rst estimate on distances under Ricci curvature bounds is the

Abresch�Gromoll inequality� ���� This estimate automatically passes to
Gromov�Hausdor	 limits�

In ���������� one �nds the �rst theorems on Ricci curvature in the
context of smooth manifolds 
integral Toponogov theorems� etc�� that
strongly resemble results which for sectional curvature� play a basic role
in the theory of Alexandrov spaces�

As noted above� the almost rigidity theorems for Gromov�Hausdor	
limit spaces were proved in ��
�� it had been conjectured in ���� that the
splitting theorem extends to Gromov�Hausdor	 limits�

From ����� it is already clear that the basic objects of any synthetic
generalization of the class� Ric
n�H�� are pairs� 
Y� ��� where Y is a
length space� and � is a Radon measure which plays the role of the
renormalized limit measure� compare Sections ���� The measure� ��
should satisfy 
��
�� for all z � Y� � � �� and k � n� for some n � 
�
Consequently� Y � Y m has Hausdor	 dimension m � n� As indi�
cated by Examples ���� and ����� neither for Alexandrov spaces� nor
even for smooth Riemannian manifolds� should one restrict � to be m�
dimensional Hausdor	 measure�

The above mentioned property of �� which is a strengthened version
of what is often refered to as a doubling condition� has signi�cant con�
sequences e�g� compactness theorems� compare also �
��� However� to
capture more completely the fundamental implication of the condition�
�Ricci curvature bounded below�� which in the smooth case� is mean
curvature comparison� or equivalently 
in the smooth case� Laplacian
comparison� one needs a version of 
��
� which is localized with respect
to direction� ���� ����� �����

Calabi emphasized that Laplacian comparison holds in a useful gen�
eralized sense� even at points where the distance function fails to be
smooth i�e� on the cut locus� compare ����� �����

In terms of mean curvature� this principle can also be formulated
as follows� Namely� rate of change of the logarithm of the area of the
intersection of any 
thin� angular sector of minimal geodesics with a
family of distance spheres� �Br
p�� is less than the corresponding rate
of change in the model space� Mn

H �
We now consider certain strict synthetic generalizations of the class�

Ric
n�H�� which are based on generalized concepts of mean curvature
comparison and Laplacian comparison�

Let X be a length space equipped with a Radon measure� �� For
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p � X and � � r� � r�� we put Ar��r�
p� � Br�
p� n Br�
p�� Given
� � s� � s� � r�� and an open subset� U 	 Ar��r�
p�� we set

A�����

Ss��s�
p� U� � fx � As��s�
p� j p� x� x� z � p� x� for some z � Ug�

Thus� Ss��s�
p� U� is the intersection with As��s�
p� of the angular sector
consisting of minimal geodesics emanating from p and the ends of which
lie in U �

A generalized version of mean curvature comparison can be formu�
lated as follows� compare 
��
�� For all p � X� � � s� � s� � r� � r��
we have

�
U�

�
Ss��s�
p� U��
�
Vn�H
s��� Vn�H
s��

Vn�H
r��� Vn�H
r��


for all U 	 Ar��r�
p���


A�����

It is easy to see that condition 
A����� already provides a strict
synthetic generalization of the class� Ric
n�H��

In order to formulate Laplacian comparison� we must have a gener�
alized notion of Laplacian for 
X� ���

Let f be a Lipschitz function on X � Given x � X and � � r� � r��
put


A����� Lipr��r�
x� f� � supz	Ar� �r� �x�

jf
z�� f
x�j

z� x
�

Assume from now on that X is locally compact� from which it follows
that Lipr��r�
x� f� is a continuous function of 
x� r�� r��� Hence� the
function�


A����� Lip
x� f� �� lim
r���

lim
r���

Lipr��r�
x� f��

is measurable� As in ��
�� we de�ne a generalized Dirichlet functional
by


A���
� Q
f� f� �

Z
X


Lip
x� f����

whenever the integral is �nite� If �
X� � 
� then this holds for all
Lipschitz functions� f �

Note that at least formally� 
A����� implies Theorem ���� of ��
�
and hence a lower bound for the �bottom of the spectrum� of Q in the
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compact case� compare ��
� Remark ������ However� due to the possible
lack of regularity in our space� there are technical points to consider
in carrying out such a proceedure� compare ���� in which an argument
based on resolution of singularities is employed�

If 
X� �� is the limit in the measured Gromov�Hausdor	 sense of a
sequence� fMn

i g� satisfying 
����� it makes sense to compare the func�
tional� Q� with the corresponding sequence of Dirichlet forms on the
manifolds� Mn

i � see ���� for details� However� in order to de�ne the
Laplacian of f 
in a weak sense� we need an appropriate de�nition of
Q
f� h� for pairs of Lipschitz functions 
f� h�� Given such a de�nition�
we can take f � f
r� and take h to be supported near some point�
z � X �

Roughly� for Q
f� h� to be de�ned� the following should hold� As�
sume that fxig satis�es xi � x and either f
xi� � f
x� or f
xi� � f
x��
for all i� In 
A����� below we attach a sign� � or �� according to which
of these alternatives actually holds� Assume in addition� that


A����� lim
i��

jf
xi�� f
x�j

xi� x
� qf 
x�

and that


A����� �qf 
x� lim
i��

jh
xi�� h
x�j

xi� x
�� qf�h
x�

exists and is independent of the particular sequence� xi� If qf�h
x� is
de�ned for almost all x and qf�h
x� � L�
X� ��� then we put


A����� Q
f� h� �

Z
X

qf�h
x��

Note that in the de�nition we have given� the roles of f and h are not
symmetric� Moreover� the functional� Q� is not bilinear in general�

If Q
f� h� exists for f � f
r� and a suitably dense collection of
functions h� then the condition �generalized Laplacian comparison holds
with respect to some Mn

H�� has an obvious meaning�
The following canonical examples do satisfy generalized Laplacian

comparison 
as well as 
A������ but not the basic rigidity and integral
Toponogov theorems� These examples were pointed out to us by Z�
Shen� compare �
��� �

��

Let Xn denote a normed vector space of dimension n� As usual� we
regard Xn as a complete metric space by setting v�� v� � jv� � v�j� Let



ricci curvature �
�

� denote the associated Hausdor	 measure� We will assume that unit
ball is strictly convex i�e� the norm on Xn satis�es the nondegeneracy
condition� If v� and v� are linearly independent� then


A����� jtv� � 
�� t�v�j � tjv�j� 
�� t�jv�j 
� � t � ���

In this case� the minimal geodesics are precisely the a�ne line segments
and every such segment extends to a line in the sense of the splitting
theorem�

Since the splitting theorem holds for Alexandrov spaces 
see ���� and
for the case of Gromov�Hausdor	 limit spaces� ����� it follows that Xn

is not an Alexandrov space unless it is isometric to Euclidean space� Rn�

Of course this can also be checked directly�� None�the�less� it is easy to
verify 
A����� 
for H ���� Also� the functional� Q� is well de�ned and

for H � �� generalized Laplacian comparison holds�

For convenience� �x an inner product on Xn� Let Ln denote the
corresponding Hausdor	 measure� Note that the identity map is bi�
Lipschitz from the original normed space� Xn� to Xn equipped with
this Euclidean structure� Since the additive group of the underlying
vector space acts by isometries with respect to both metrics� it follows
in particular that � is constant multiple of Ln� Thus� the divergence�
divW � of a vector �eld� W � is the same when de�ned with respect to
either of the associated volume forms�

For t���� scalar multiplication by t de�nes homothety of Xn which
scales distances by a factor t and hence scales � by a factor� tn� It
follows directly that 
A����� holds for H � ��

If we regard X as a normed linear space� the nondegeneracy con�
dition� 
A������ allows us to de�ne a bijection� L� from the dual space

Xn�� to Xn 
the Legendre transformation�� Namely� when restricted
to the unit sphere� every linear functional� ��� takes its maximum at a
unique point� v� Then we send �� to ��
v�v� The map� L� is not linear
unless Xn is isometric to Euclidean space� However� we can de�ne the
gradient of a Lipschitz function� f � by putting erf � L
df��� Typically�
this gradient is not a linear map 
from functions to vector �elds��

It follows from the previous discussion that the functional� Q� is well
de�ned� Speci�cally� qf�h � dh
erf�� Of course� if the gradient� er� is
not linear� then the functional� Q� will not be bilinear� However� it is
easy to verify that Laplacian comparison holds� Indeed� we have


A������ Q
f� h� �

Z
Xn

e&f � h�
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where the nonlinear Laplacian� e&� is given by

A������ e& � div er�

Shen has observed that the above de�nition extends to arbitrary Finsler

manifolds� in which case� one must replace div by fdiv� see �

��� Then
an easy computation gives


A������ e&er � 
n � ��er �

Assume that there is at least one point� v� on the unit sphere of
Xn� at which this sphere is not C��smooth� Let w be such that the
intersection of the plane spanned by v and w and the the unit sphere
is a curve which is not C��smooth� Then for arbitrarily thin triangles
lying in this plane� with base along v� the excess is bounded below by
a de�nite multiple of the altitude i�e� even in qualitative form� the
Abresch�Gromoll inequality� a weak form of the splitting theorem� does
not hold�

Note that the nonsmoothness of the unit sphere implies that 
A�����
is violated for the dual space� 
Xn��� However� if we consider a sequence
of norms for which the unit sphere is smooth� which converges to a
norm for which the unit sphere is not smooth� it follows that there is
no inequality of Abresch�Gromoll type which holds uniformly for such
a sequence�

The proof of the Abresch�Gromoll inequality for smooth Riemannian
manifolds uses only Laplacian comparison and the maximum principle�
Since the Laplacian� e&� satis�es the maximum principle� it becomes
clear that the failure of the proof in our situation can be traced to the
nonlinearity of e&� Recall in this connection� that in the proof� it is
actually neccesary to apply the Laplacian to a linear combination of
two distance functions 
which occur in the excess function� and a cer�
tain comparison function of the distance from a third point� see ����
If the Laplacian is nonlinear� Laplacian comparison for individual dis�
tance functions does not imply Laplacian comparison for such linear
combinations�

Clearly� there is no reason for the generalized Dirichlet form� Q� to
be bilinear unless almost all points of the underlying metric space are
actually regular� So if we assume the bilinearity of the Q� we are in
e	ect making a hidden assumption concerning the local regularity of
our space� see ���� for further discussion�
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On the other hand� it would be of interest to explore theories 
limit
space and synthetic� in which the role of Riemannian manifolds is played
by Finsler manifolds i�e� in which role of Euclidean spaces is played by
Minkowski spaces�

While the bilinearity of Q su�ces for the Abresch�Gromoll inequal�
ity� in order to obtain the splitting theorem itself� a version of Bochner�s
formula must be incorporated into the discussion�

Let us make a �nal remark� In the Riemannian case� the penulti�
mate step in the proof of the splitting theorem produces a vector �eld
of constant norm which is the gradient of a harmonic function� see �����
Bochner�s formula implies that this vector �eld is parallel� and hence�
by the DeRham decomposition theorem� the manifold splits isometri�
cally� As a particular consequence� the gradient �eld is also Killing�
For the space� Xn� considered above� the coordinate functions are har�
monic� Moreover� their gradients have constant length and do generate
��parameter groups of isometries� However� the splitting theorem still
fails to hold�
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